
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2012)
J. Bender, A. Kuijper, D. W. Fellner, and É. Guérin (Editors)

Fast Simulation of Inextensible Hair and Fur

M. Müller T.Y. Kim N. Chentanez

Nvidia PhysX Research

Abstract
In this short paper we focus on the fast simulation of hair and fur on animated characters. While it is common in
films to simulate single hair strands on virtual humans and on furry animals, those features are either not present
on characters in computer games or modeled with simplified textured meshes. The main difficulty of simulating hair
in real time applications is the sheer number of hair strands and the fact that each hair is inextensible. Keeping
thousands of deformable objects from being stretched is computationally expensive. In this paper, we present a
robust method for simulating hair and fur that guarantees inextensiblity with a single iteration per frame. For an
iteration count this low, existing methods either become unstable or introduce a substantial amount of stretching.
Our method is geometric in nature and able to simulate thousands of inextensible hair strands in real time.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Physically Based Modeling; Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation and Virtual Reality

1. Introduction

While simulating hair and fur is common in the movie indus-
try, those features are rarely seen in today’s computer games.
Simplified approaches represent human hair as a relatively
small set of mesh stripes with alpha textures. While this ap-
proach yields plausible results for human hair to a certain
extent, it is not well suited for simulating characters that are
covered with fur.

One of the reasons for using this simple approach is that
there is a lack of simulation methods that are fast and ro-
bust enough to simulate thousands of hair strands in real
time. Besides the large number of hair strands, one of the
main challenges is that each hair is perceived as inextensi-
ble. Guaranteeing zero stretch in simulations of deformable
objects is a non-trivial problem.

One method to simulate inextensible ropes is to use the
angles between segments as the degrees of freedom instead
of the positions of mass points. In this subspace of spatial
configurations, a rope always keeps its rest length. However,
using generalized coordinates in the presence of colliding
objects and in over-constrained situations becomes a difficult
problem and its solution expensive.

With the Euclidean coordinates of the mass points or finite
elements as the degrees of freedom, inextensibility can be

achieved in the limit by using internal coupling with infinite
stiffness. However, simply increasing the stiffness constants
introduces stability and damping issues.

Instead of using spring-like forces, one can solve for con-
straint forces that yield velocities which keep the mass points
on trajectories that do not change the constraint functions.
One problem with this approach is that the mass points can
drift away from the conserving paths, especially when large
time steps are used.

Therefore, inextensibility is typically achieved by limiting
strain geometrically after the dynamics solver has updated
the positions of the mass points at each time step. In the
case of a mass spring system, the strain limiting step moves
the mass points such that all the springs are not extended by
more than a given factor. Finding such positions is a global,
non-linear problem which is typically solved by either using
multiple global Newton-Raphson solves [GHF∗07] or mul-
tiple passes through all the constraints [MHR06].

In this paper we present a simulation method that takes
only one iteration per visible frame while guaranteeing zero-
stretch. Our method extends a technique called Follow The
Leader which as previously been used for quasy-static sim-
ulations only [BLM04].

Being geometric, our method is not as accurate as physi-

c© The Eurographics Association 2012.

M. Müller, N. Chentanez & T.Y. Kim / Fast Simulation of Inextensible Hair and Fur

Figure 1: Our method allows the simulation of every hair strand in real time. From left to right: 47k hairs simulated at 25
fps including rendering and hair-hair repulsion. Long hair composed of 1.9m particles at 8 fps. Curly hair using visualization
post-processing.

cally based techniques in that it introduces a certain amount
of artificial damping. In most situations we encountered, this
is not problematic because objects in the real world are quite
heavily damped in general. Our target scenario is adding hair
and fur to animated characters. Those actors constantly add
energy to the system when they move.

2. Related Work

The simulation of one dimensional elastic solids such as hair
and rods has been studied extensively in computer graph-
ics. For an excellent survey of the field we recommend
[WBK∗07] and [HCB∗07]. More recent developments in-
clude the study of discrete elastic rods [BWR∗08] and vis-
cous threads [BAV∗10] which treat the centerline as dynamic
and the material frame as static. Spillman and Teschner
[ST07,ST08] represent material frames with quaternions and
couple them to the centerline with penalty forces. Kubiak et
al. [KPGF07] use PBD to simulate threads in knot tying ap-
plications. A more analytical approach was taken by Theet-
ten et al. [TGAB08] who use dynamic splines for the simu-
lation. Selle et al. [SLF08] propose to use altitude springs to
handle torsion in hair simulation and the semi-implicit dis-
cretization of springs to make the simulation unconditionally
stable. Bertails [Ber09] devised a linear time algorithm to
simulate piecewise helical rods. Sueda et al. [SJLP11] pro-
pose the use of reduced degree of freedom Eulerian nodes
to handle the simulation of ropes and cables in highly con-
strained scenarios.

Since the explicit handling of hair-hair interaction is ex-
pensive, [PHA05] proposed to use a regular background grid
to compute a hair density field which is used to approximate
mutual hair repulsion and friction. Our method for hair-hair
interaction is based on this idea. A similar approach was
used by McAdams et al. [MSW∗09]. They handle the bulk
interaction and volume preservation of hairs using an Eule-
rian grid.

Often it is not necessary to simulate every individual hair.

Chang et al. [CJY02] proposed to only simulate a subset of
hairs called key hairs and interpolated all other hair shapes
from this subset. This same approach was used by [Tar08] in
a real-time hair rendering framework. One of the drawbacks
of the method is that interpolated hairs do not properly col-
lide against the character. Also, smooth hair tends to look
clumpy depending on the number of key hairs used. In con-
trast, our method allows the simulation of every individual
hair in real time which brings a new level of realism to inter-
active applications such as computer games.

3. Simulation Method

We model a single hair by a chain of particles that is attached
at one end (see Figure 2). Let x1, . . . ,xn be the positions of
the particles with particle 1 being attached and let us assume
that the rest distances between adjacent particles are all l0.
Starting with positions that violate the distance constraints
we want to move the particles such that all the constraints
are satisfied but with the restriction that we are only allowed
to iterate through all the particles once.

3.1. Static Follow-The-Leader (FTL)

One way to do this is to process the particles in the order
from 2 to n. Particle 2 has to be on a sphere with radius
l0 around particle 1. A natural choice for its position is to
choose the point on the sphere that is closest to the original
position x2, i.e. to move it in the direction of particle 1. In
case of a collision, the two remaining degrees of freedom of
particle 2 within the sphere can be used to resolve the col-
lision simultaneously. In this case, one chooses the position
closest to x2 that resolves the collision. Once the new posi-
tion of particle 2 is determined, the algorithm continues with
particle 3 preforming the same steps as before with particle 2
taking the role of particle 1. Figure 2(a) shows the algorithm
for a chain of four particles.

This algorithm is called Follow The Leader (FTL). In the
field of physically based simulation it was used by [BLM04]

c© The Eurographics Association 2012.

M. Müller, N. Chentanez & T.Y. Kim / Fast Simulation of Inextensible Hair and Fur

(a) (b)

l0
1x

2x

3x
4x

2d

1x

2x

3x
4x

(c)

1x

2x

3x
4x

l0

l0
3d

4d

2d 3d

3d
4d

4d

Figure 2: (a) FTL projection: the white points show the positions of the particles before projection with the topmost fixed. Each
particle is moved towards its predecessor to enforce their mutual distance to be l0. The red arrow di is the resulting velocity
corrections of particle i. (b) Projection using multiple iterations of PBD and the resulting velocity corrections in red. The
velocity corrections are tilted to the right due to the pull of the subsequent chain. (c) DFTL projection: the velocity correction of
particle i is the difference di - di+1. This vector is tilted to the right as well but more than in the case of PBD which introduces
damping.

for the quasy static simulation of knot tying. One of the main
reasons why it has not become popular in the field is that
making it work in a dynamic simulation is challenging. It is
this problem that we will investigate next.

3.2. Dynamic Follow-The-Leader (DFTL)

For a dynamic simulation, the particles need to store and up-
date velocities along with the positions. Let v1, . . . ,vn be the
velocities of the particles. Since we manipulate positions to
drive the simulation we need a way to derive the velocity up-
dates from the position updates. Position Based Dynamics
(PBD) [MHR06] provides such a way. The algorithm to per-
form one time step of PBD has the following simple struc-
ture

p← x+∆t v+∆t2 f (1)

p← SolveConstraints(p) (2)

v← p−x
∆t

(3)

x← p, (4)

where ∆t is the time step size and f external forces. To make
FTL dynamic we could simply perform static FTL inside the
SolverConstraints() method. This way, we would still only
need one iteration per time step because the four steps can
be performed together in a single pass.

However, this straight forward method yields the strange
behavior shown in Figure 3 and in the accompanying video
for a horizontal chain attached on the left and falling un-
der gravity. To understand why this simple approach does
not work we have to have a closer look at the physical sys-
tem we are simulating. In traditional PBD to solve a dis-
tance constraint between two particles, they are moved to-
wards or away from each other by distances proportional

to their inverse masses. Therefore, moving just the second
particle corresponds to the situation in which the first parti-
cle has infinite mass. In general, by using FTL as the pro-
jection step in a dynamic simulation, a system with masses
m,sm,s2m, . . .sn−1m with s→ 0 is simulated – independent
of the integration method.

We have not found a discussion of this interesting, physi-
cally impossible system in the literature but came to the fol-
lowing intuition about its behavior. At a given point in time
as shown in any image of Figure 3, a series of particles start-
ing from the attachment downwards has come to rest due to
damping. One particle below them contains all the current
kinetic energy of the system and swings around all the par-
ticles below it effortlessly because the sum of all the masses
of the tail is infinitely smaller than its own mass. Moreover,
none of its motion is propagated to the parents because they,
have infinitely more mass.

3.3. Velocity Correction

Deriving the dynamic behavior of a chain of particles with
equal masses after an FTL projection step is surprisingly
difficult because the extremely uneven mass distribution is
deeply inherent to the FTL projection. After investigating
various methods that all failed, we found a very simple solu-
tion. It completely hides the uneven mass distribution at the
price of introducing some numerical damping.

Let di be the correction vector computed by FTL for par-
ticle i. When considering constraint (i− 1, i), FTL updates
the positions of particles i−1 and i as

pi−1← pi−1 (no update) (5)

pi← pi +di. (6)

To generate the behavior of two particles with the same mass

c© The Eurographics Association 2012.

M. Müller, N. Chentanez & T.Y. Kim / Fast Simulation of Inextensible Hair and Fur

Figure 3: Follow The Leader projection yields the dynamic
behavior of a chain of particles each of which has infinitely
more mass then its successor. The figure shows a simulation
of such a chain starting as a horizontal line attached at the
left end and falling under gravity. Each image corresponds
to a different point in time and shows a set of overlayed suc-
cessive frames.

we would have to move particle i− 1 as well by the same
amount as

pi−1← pi−1−di (7)

pi← pi +di (8)

in the update step of particle i. However, this would violate
the constraint between particle i− 2 and particle i− 1. The
idea to circumvent this problem is to use this symmetric po-
sition of particle i− 1 only to compute the new velocity in
Eq. (3) at the end of the time step, not for the position of the
particle. We, thus, modify Eq. (3) as follows:

vi←
pi−xi

∆t
+ sdamping

−di+1

∆t
. (9)

The velocities derived from FTL without corrections are
shown in 2(a) in red. 2(b) shows the velocities resulting from
multiple iterations of PBD - the physically correct velocities.
These are tilted more to the right due to the pull of the sub-
sequent chain. The corrected FTL velocities shown in 2(c)
are tilted to the right as well but more against the pulling
direction which introduces damping.

Since Eq. (9) is our main contribution, we would like to
emphasize that this contribution is non-trivial. As mentioned
above, we have experimented with various ways to derive
velocities that hide the uneven mass distribution of FTL. The
solution presented here is the only one we found. For in-
stance, at first glance, it seems more natural to introduce a
factor of 1

2 in Eqs. (7) and (8). However, not compensating
for the entire displacement of FTL still results in the behav-
ior shown in Fig. 3. We also experimented with deriving the
velocities in a completely different way, decoupled from the
FTL projections of the positions and did not find a solution
yielding natural behavior.

In Eq. (9) we introduced the scalar parameter sdamping ∈
[0,1]. For sdamping = 1 the uneven masses are completely
compensated for but with the introduction of numerical
damping (see Figure 4 left). For sdamping smaller but close to

Figure 4: Rope simulation with velocity correction. Left:
Correction scale sdamping = 1. Right: Correction scale
sdamping = 0.9.

Figure 5: To simulate curly hair, we generate separate ver-
tices for rendering (red) by subdividing segments and offset
the interpolation particle positions along the particle nor-
mals (green).

1, damping is reduced while the artifact of the uneven masses
is still hardly noticeable (see Figure 4 right and the accom-
panying video). Reducing sdamping is a simple and computa-
tionally cheap way to reduce numerical damping.

3.4. Curly Hair

To simulate curly hair we do not modify the simulation
model but create a separate chain of vertices for rendering
only (see Figure 5). To this end, we transport a normal down
the hair in FTL style. The first normal is defined by the at-
tachment. To compute the normal of particle i we make the
normal of particle i− 1 perpendicular to each adjacent seg-
ment of particle i by removing the parallel components. The
normal is then the normalized average of those two normals.
The bi-normals can be computed as the cross product with
the hair direction. For subdivision points on the segments we
simply linearly interpolate and normalize the frames. The
visual vertices are then computed within the plane spanned
by normals and bi-normals. We use a spiral with decreasing
frequency along the hair. To get realistic behavior we set the
hair thickness for character collision to the radius of the spi-
ral and increase the hair-hair repulsion and friction forces as
described in the next Section. (see Figure 1 right).

3.5. Hair-Hair Interaction

With an increasing number of hairs, handling hair-hair in-
teractions and collisions with the character’s skin become
the bottleneck. To handle hair-hair friction and repulsion,

c© The Eurographics Association 2012.

M. Müller, N. Chentanez & T.Y. Kim / Fast Simulation of Inextensible Hair and Fur

we use the method proposed by Petrovic et al [PHA05]. At
each time step we first compute a particle density field on a
regular background grid. Each particle adds its tri-linear in-
terpolation weights to the density values of the 8 nodes of
the surrounding cell. It also adds its velocity multiplied by
the tri-linear interpolation weights to the velocities of the 8
nodes. Dividing the velocities by the densities stored at the
grid nodes yields an averaged velocity field that can be used
to imitate friction.

For each particle, we interpolate this velocity field at the
particle’s position. We then replace the particle’s velocity
with a weighted average of its own velocity and the velocity
interpolated from the grid at each time step.

v← (1− sfriction)v+ sfrictionvgrid (10)

By tuning the weight sfriction we can control the amount of
friction.

Hair-hair repulsion is needed to get volumetric hairstyles
and to get the impression of finite hair thickness. To this end,
we compute the normalized gradient g = ∇ρ/|∇ρ| of the
density field at the particle’s location as [PHA05] but use a
different way to update the velocity:

v← v+ srepulsiong/∆t. (11)

Both velocity correction steps are executed after PBD inte-
gration.

3.6. Collision with the Character

When the hair is not too long as is the case for furry charac-
ters, one can ignore character collision without introducing
disturbing visual artifacts when hair-hair repulsion is turned
on as Figure 7 shows. When the color of the fur and of the
underlying skin are similar, it is even possible to get away
with neither hair-hair nor hair-body interaction as the first
image shows.

In the case of longer human hair, collision with the char-
acter is essential. For the simulations shown in Figure 1 we
used a simplified collision volume composed of 8 ellipsoids.

4. Results

Figure 6 shows a comparison of dynamic FTL (blue), PBD
(green) and symplectic Euler (red). A rope composed of 30
particles is dragged around by the user at the top. The time
step size, particle masses, segment lengths and gravitational
acceleration are 0.01s, 0.01kg, 0.02m and−10m/s2, respec-
tively. In a first experiment (left) we let all three methods
spend about same amount of time, i.e. 2 iterations for PBD
and 2 sub-steps for symplectic Euler. The maximum stiff-
ness allowed to keep the latter stable was k = 100N/m. Both
PBD and Euler show a substantial amount of stretching. In
a second experiment we adjusted the parameters such that
all three ropes showed similar behavior. To achieve this 25

Figure 6: Screen shots of an animation in which the top
particle of a rope is dragged around using three simulation
methods: dynamic FTL (blue), PBD (green) and symplectic
Euler (red). Left: all three methods spend the same amount
of time per frame. Right: Time spend is adjusted to yield sim-
ilar results.

PBD iterations where needed. For Euler integration we had
to increase the stiffness to k = 3000N/m which could only
be simulated stably with 20 substeps.

To demonstrate the performance and visual plausibility of
our method in realistic scenarios, we used it to simulate both
fur and human hair. Both scenes shown in Figures 1 and 7
run at interactive rates with the parallelized CUDA version
of our algorithm on an NVIDIA GeForce GTX 480 GPU.

The short hair shown in the first two images of Figures 1
is composed of 47k hairs and 776k simulated particles. Turn-
ing hair-hair repulsion on and off yields different hair styles.
The simulation including rendering and collision against 8
ellipsoids runs at 25 fps. The long hair shown in the third im-
age of Figure 1 also has 47k hair strands but 1.9m particles.
The scene still runs at interactive 8 fps. The fourth image
shows the result of applying our simple method to create a
curly hair style. Since we only use 2k and 38k particles, the
simulation is much faster and runs at 80fps.

Figure 7 shows a furry monster. The fur is modeled with
100k hair strands and 684k particles. As mentioned previ-
ously, collision with the character is ignored because hair-
hair repulsion makes the hairs move away from the skin. The
third image shows the interaction with a hair blower on the
head. This scenario would be difficult to handle with the key
hair approach because the hairs get separated to point into
different directions at arbitrary locations.

5. Conclusion

We have presented a method to simulate the dynamic behav-
ior of inextensible hair and fur which guarantees zero-stretch
in a single iteration per visual frame. Being geometric and
approximative, our method introduces a certain amount of
numerical damping. However, we did not find this to be a
significant drawback because characters constantly add en-

c© The Eurographics Association 2012.

M. Müller, N. Chentanez & T.Y. Kim / Fast Simulation of Inextensible Hair and Fur

Figure 7: In the case of fur, hair-hair repulsion allows to ignore hair-character collision without the introduction of disturbing
artifacts. The third image shows the interaction with a hair blower on the head.

ergy when they are in motion and objects in the real world
are significantly damped. We also proposed a simple method
to reduce artificial damping. As the results show, our method
makes possible the simulation of tens of thousands of hairs
in real-time including character collision handling and hair-
hair interaction.

References
[BAV∗10] BERGOU M., AUDOLY B., VOUGA E., WARDETZKY

M., GRINSPUN E.: Discrete viscous threads. ACM Trans. Graph.
29 (July 2010), 116:1–116:10. 2

[Ber09] BERTAILS F.: Linear time super-helices. Comput. Graph.
Forum 28, 2 (Apriö 2009), 417–426. 2

[BLM04] BROWN J., LATOMBE J.-C., MONTGOMERY K.:
Real-time knot-tying simulation. Vis. Comput. 20 (May 2004),
165–179. 1, 2

[BWR∗08] BERGOU M., WARDETZKY M., ROBINSON S., AU-
DOLY B., GRINSPUN E.: Discrete elastic rods. ACM Trans.
Graph. 27 (August 2008), 63:1–63:12. 2

[CJY02] CHANG J. T., JIN J., YU Y.: A practical model for
hair mutual interactions. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New
York, NY, USA, 2002), SCA ’02, ACM, pp. 73–80. 2

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient simulation of
inextensible cloth. ACM Trans. Graph. 26 (July 2007). 1

[HCB∗07] HADAP S., CANI M.-P., BERTAILS F., LIN M. C.,
WARD K., MARSCHNER S. R., KIM T.-Y., KACIC-ALESIC Z.:
Strands and Hair: Modeling, Animation, and Rendering, vol. 33.
ACM SIGGRAPH Course Notes, Mai 2007. Award: Best Course
Notes for a New Course. 153 pages. 2

[KPGF07] KUBIAK B., PIETRONI N., GANOVELLI F., FRATAR-
CANGELI M.: A robust method for real-time thread simulation.
In Proceedings of the 2007 ACM symposium on Virtual reality
software and technology (New York, NY, USA, 2007), VRST
’07, ACM, pp. 85–88. 2

[MHR06] MÜLLER M., HENNIX B. H. M., RATCLIFF J.: Posi-
tion based dynamics. Proceedings of Virtual Reality Interactions
and Physical Simulations (2006), 71–80. 1, 3

[MSW∗09] MCADAMS A., SELLE A., WARD K., SIFAKIS E.,
TERAN J.: Detail preserving continuum simulation of straight
hair. ACM Trans. Graph. 28 (July 2009), 62:1–62:6. 2

[PHA05] PETROVIC L., HENNE M., ANDERSON J.: Volumetric
methods for simulation and rendering of hair. In Tech. rep., Pixar
Animation Studios (2005). 2, 5

[SJLP11] SUEDA S., JONES G. L., LEVIN D. I. W., PAI D. K.:
Large-scale dynamic simulation of highly constrained strands.
ACM Trans. Graph. 30 (Aug. 2011), 39:1–39:10. 2

[SLF08] SELLE A., LENTINE M., FEDKIW R.: A mass spring
model for hair simulation. ACM Trans. Graph. 27 (August 2008),
64:1–64:11. 2

[ST07] SPILLMANN J., TESCHNER M.: M.: Corde: Cosserat rod
elements for the dynamic simulation of one-dimensional elastic
objects. In In Proc. ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (2007), pp. 63–72. 2

[ST08] SPILLMANN J., TESCHNER M.: An adaptive contact
model for the robust simulation of knots. Comput. Graph. Fo-
rum 27, 2 (2008), 497–506. 2

[Tar08] TARIQ S.: Real-time hair rendering on the gpu. In ACM
SIGGRAPH 2008 talks (2008). 2

[TGAB08] THEETTEN A., GRISONI L., ANDRIOT C., BARSKY
B.: Geometrically exact dynamic splines. Comput. Aided Des.
40 (January 2008), 35–48. 2

[WBK∗07] WARD K., BERTAILS F., KIM T.-Y., MARSCHNER
S. R., CANI M.-P., LIN M. C.: A survey on hair modeling:
Styling, simulation, and rendering. IEEE Transactions on Visu-
alization and Computer Graphics 13 (March 2007), 213–234. 2

c© The Eurographics Association 2012.

