
Interactive Virtual Materials

Matthias Müller Markus Gross

ETH Zürich

Figure 1: The pitbull with its inflated head (left) shows the
artifact of linear FEM under large rotational deformations. The
correct deformation is shown on the right.

Abstract
In this paper we present a fast and robust approach for

simulating elasto-plastic materials and fracture in real
time. Our method extends the warped stiffness finite ele-
ment approach for linear elasticity and combines it with a
strain-state-based plasticity model. The internal principal
stress components provided by the finite element compu-
tation are used to determine fracture locations and orien-
tations. We also present a method to consistently animate
and fracture a detailed surface mesh along with the under-
lying volumetric tetrahedral mesh. This multi-resolution
strategy produces realistic animations of a wide spectrum
of materials at interactive rates that have typically been
simulated off-line thus far.

Key words: Physically Based Animation, Finite Element
Method, Large Deformations, Stiffness Warping, Elastic-
ity, Plasticity, Fracture.

1 Introduction

Today’s interactive graphics applications, such as com-
puter games or simulators, demand a continuously grow-
ing degree of visual realism and technical sophistication.
This demand poses great challenges for the underlying
real-time graphics algorithms including rendering and an-
imation. In addition to the display quality, it is espe-
cially the way in which the physical behavior of char-
acters, objects, or entire scenes are simulated that even-
tually determines the degree of realism experienced by
the user. Using animation sequences predefined by an
artist is a viable way to simulate physical effects in in-
teractive systems. However, this method exhibits clear

limitations when it comes to the realistic simulation of
material behavior, such as elasticity, plasticity, melting,
or fracture. Therefore, methods that control the object by
physical laws have received increasing attention.

In the past decades, computational scientists have de-
vised various methods for the simulation of material be-
havior with a high level of accuracy. The main goal of
such simulations has been the authentic reproduction of
the real world, whereas interactivity has not been a pri-
mary focus.

In contrast, in interactive graphics it is often not neces-
sary to simulate the physical behavior with such numer-
ical accuracy. Approximations are acceptable as long as
they yield plausible and visually realistic results. Con-
siderable research has been devoted to the development
of such approximate simulation techniques. Going from
off-line computations to interactive simulations, however,
is not just a matter of making things faster. In order to al-
low for random interaction with the system, stability, vi-
sual quality and speed are the crucial requirements such
methods have to satisfy.

In this paper, we present an unconditionally stable
method to simulate a wide range of materials including
elasticity, plasticity, melting, tearing and fracture in real
time, while retaining geometric detail on the object’s sur-
face. Our method is primarily designed for applications
in computer games, virtual surgery and related fields.

1.1 Related Work

During the last two decades, physically-based simulation
methods tailored to the field of computer graphics have
been developed. In the late eighties, Terzopoulos et al.
proposed the use of physical models for animating elastic
and plastic objects [21] and fracture effects [20] which pi-
oneered the use of physically-based models in the field of
computer graphics. They used surfaces to represent de-
formable objects and solved the governing partial differ-
ential equations using finite difference schemes. While
their work focused on the correct modeling of physical
effects, the speed of the simulation was of secondary im-
portance and, at that time, computations were done off-
line. In the following years, a variety of new models
for linear and non-linear elastic objects were proposed
in computer graphics (summarized in [8] and [22]) while

little attention was given to plasticity and fracture effects.

Recently, O’Brien et al. presented a finite-element-
based technique for simulating brittle [16] and ductile
[15] fracture in connection with elasto-plastic materials.
Their method produces visually convincing results, but it
is not designed for interactive or real-time use.

ArtDefo [10] designed by James and Pai was among
the first systems to simulate elastic objects at interactive
rates. They use a linear boundary element model with
pre-computed modes for a fixed geometry. Debunne [4]
and Wu [24] use a hierarchy of volumetric meshes and
Grinspun [9] and James [11] a hierarchy of basis func-
tions which speed up the simulation but make changes
in a mesh caused by fracture difficult to handle. On the
other hand, interactive fracture methods such as the ones
proposed by Smith [19] and Müller [13] are tailored for
rigid or brittle objects.

Since linear elasticity models are both stable and com-
putationally cheap, they have become popular in the field
of real-time animation. Linear models are, however, not
suitable for large rotational deformations, because the
non-linear effects create displeasing distortions of the ge-
ometry (see Fig. 1). To solve this problem Capell et al.
[1] suggest manual division of an object into small parts
based on its skeleton. Each part uses its local (rotated) co-
ordinate frame to compute the linear elastic forces. The
primary disadvantage of this approach is the discontinu-
ity at the boundary between two parts.

An alternative to Capell’s method is the warped stiff-
ness approach proposed by Müller [12] which is a co-
rotational formulation [6] and uses a local coordinate
frame for each vertex to compute the linear force. The
resulting discontinuities are smaller because individual
rotations are computed per vertex. However, small lo-
cal errors sum up and can cause ghost forces. For FEM-
based cloth modeling, Etzmuss [5] improved the warped
stiffness approach by using element-based rotation ex-
traction.

1.2 Our Contribution

In this paper, we present a unified algorithmic framework
for the real-time simulation of a variety of physical phe-
nomena for geometrically complex objects. We propose a
way to efficiently and robustly compute the elastic forces
avoiding linear distortions and ghost forces. Both a plas-
ticity and a fracture model are integrated into the pseudo-
linear elastic force computation. We also propose an al-
gorithm to consistently animate and fracture a high reso-
lution surface mesh based on a coarser underlying volu-
metric mesh. This multi-resolution approach enables us
to simulate geometrically complex objects in real time
while simultaneously retaining their surface details.

2 Elasticity Model

Our elasticity model is based on the linear continuum
elasticity theory [2]. We use the Finite Element Method
(FEM) [3] with linear displacement tetrahedra to solve
the governing partial differential equations. Here we
summarize the steps essential to understand our method.
We also include details of how the stiffness matrix is
computed because some intermediate quantities are used
in sections 3 and 4 to model plasticity and fracture.

2.1 The Stiffness Matrix
In continuum elasticity theory the deformation of
an object is described by a vector field u(x) =
[u(x), v(x), w(x)]T meaning that every point x =
[x, y, z]T in the undeformed body corresponds to point
x + u(x) in the deformed body. The first step in a finite
element approach is to replace the continuous displace-
ment field u(x) with a discrete set of displacement vec-
tors defined only at the vertices of a mesh – in our case a
tetrahedral mesh. Within each tetrahedral element e, the
displacement field is linearly interpolated as

u(x) = He(x) · û, (1)

where He(x) is a 3 × 12 matrix that contains the
shape functions of the tetrahedral element and û =
[u1, v1, w1, . . . , u4, v4, w4]T is the collection of the dis-
placement vectors at the four vertices of the tetrahedron.
Using Cauchy’s linear strain tensor [3], for the strain
within the tetrahedron we get

ε = Be · û, (2)

where Be a constant 6 × 12 matrix, which can be pre-
computed for every tetrahedron. Using Hooke’s law, for
the stress within an element we get

σ = E · ε = EBeû, (3)

where E is a 6 × 6 matrix which – for isotropic materi-
als – only depends on two scalars, Young’s modulus and
Poisson’s ratio [3]. The elastic forces fe acting on the
nodes of an element are derived from the strain energy
which, in turn, depends on the strains and stresses within
the element. Using Cauchy strain, the forces turn out to
be linearly dependent on the vertex displacements û:

fe = Keû (4)

where the 12×12 matrix Ke = VeBT
e EBe is the stiffness

matrix and Ve the volume of the element. Finally, the
3n×3n dimensional stiffness matrix K of the entire mesh
is an assembly of the individual Ke of all the elements.

2.2 Dynamic Deformation
To simulate the dynamic behavior of an object, the co-
ordinate vector x is made a function of time, x(t). The
following governing equation for x(t) in Lagrange’s form
describes the dynamics of the system:

Mẍ + Cẋ + K(x− x0) = fext, (5)

where ẋ and ẍ are the first and second derivatives of x
with respect to time, M is the mass matrix, C the damp-
ing matrix and fext a vector of external forces. Eqn. (5)
defines a coupled system of 3n linear ordinary differen-
tial equations for the n position vectors contained in x.

The advantages of using linearized elastic forces are,
first, that the stiffness matrix K is constant and can be
pre-computed before the simulation starts. Second, when
an implicit scheme is used to solve Eqn. (5), a purely
linear system has to be solved at every time step. We
choose implicit Euler integration because unlike explicit
schemes it is unconditionally stable [23, 18]. Uncondi-
tional stability is essential in an interactive system. Third,
if the tetrahedra in the original mesh are well shaped, the
system matrix is well conditioned throughout the sim-
ulation. In contrast, when non-linear elastic forces are
used, a stiffness matrix has to be computed at every time
step and the system matrix can become arbitrarily ill-
conditioned because it depends on the deformed model.

Linearized elastic forces are, however, only valid close
to the equilibrium configuration. Under large rotational
deformations, they cause unrealistic growth in volume as
demonstrated by the pitbull model in Figure 1.

2.3 Element-Based Warped Stiffness
In [12] Müller et al.propose a method they call Stiffness
Warping to remove the artifacts that linear elastic forces
show while keeping the governing equation linear. They
compute the elastic forces for every vertex in a local un-
rotated coordinate frame. However, the proposed way of
extracting the rotational components of the deformation
has two main disadvantages. First, the rotation Ri of ver-
tex i has to be computed from the locations of its adja-
cent vertices which is an ambiguous problem. Second,
the elastic forces are not guaranteed to sum up to zero
resulting in possible ghost forces.

Following Etzmuss [5], we solve these problems by ex-
tracting rotations of elements rather than rotations of ver-
tices. Contrary to the vertex-based approach, our method
also allows the integration of the plasticity model de-
scribed in the next section. For a single tetrahedral el-
ement with stiffness matrix Ke, the forces fe acting at its
four vertices are

fe = Ke · (x− x0) = Ke · x + f0e, (6)

where x contains the positions of the four vertices and f0e

contains force offsets. Now let us assume that we know
the rotational part Re of the deformation of the tetrahe-
dron. Then, using the warped stiffness concept adopted
to elements, we compute the forces as

fe = ReKe · (R−1
e x− x0)

= ReKeR−1
e x−ReKex0

= K′
ex + f ′0e,

(7)

where Re is a 12 × 12 matrix that contains four copies
of the 3 × 3 rotation matrix along its diagonal. By do-
ing so, we reach the exact same forces as though we had
computed the regular linear elastic forces in a rotated co-
ordinate frame (see Fig. 2). The forces in fe are, thus,
guaranteed to sum to zero. Now, for the elastic forces of
the entire mesh we get

f = K′x + f ′0, (8)

where the global stiffness matrix K′ and force offset vec-
tor f ′0 are the sums of the element’s rotated stiffness ma-
trices K′

e = ReKeR−1
e and force offsets f ′0e = Ref0e

with global vertex numbers. Our method has the follow-
ing main features:

• No ghost forces: Since the individual fe all sum to
zero, the forces in f sum to zero, too, which means
the method does not produce ghost forces.

• Stability: As in non-linear FEM, the global system
matrix derived from Eqn. (5) changes for every time
step. However, in non-linear FEM it can become
arbitrarily ill-conditioned because it depends on the
shape of the deformed tetrahedra. With our method,
the local system matrices of elements are only ro-
tated which does not change their condition. Since
the global system matrix depends on the sum of dif-
ferently rotated element matrices, its condition num-
ber might still change slightly. However, in all of
our examples presented in section 7, the global con-
dition number never changed by more than 25 per-
cent. If the tetrahedra in the original mesh have good
aspect ratios, the simulation remains stable for arbi-
trary deformations.

• Speed: In contrast to non-linear FEM, the ele-
ment’s stiffness matrices Ke can be pre-computed
and reused saving a considerable amount of com-
putation time [12]. However, unlike in the vertex-
based technique, these matrices are rotated before
the summation. This means that, while the Ke can
still be pre-computed, the global stiffness matrix K′

has to be summed up whenever the rotations change,
i.e. at every time step. Fortunately, the time for the

0x

x

)(0xx −

)(0

1
xxR −

−

e

xR
1−

e

e
R

)(0

1
xxRKR −

−

eee

)(0

1
xxRK −

−

ee

Figure 2: To compute the elastic forces acting at the vertices
of a tetrahedron, its deformed coordinates x are rotated back to
an unrotated frame R−1

e x. There the displacements R−1
e x −

x0 are multiplied with the stiffness matrix yielding the forces
Ke(R

−1
e x − x0) that are finally rotated back to the frame of

the deformed tetrahedron by multiplying them with Re.

summation is linear in the number of elements and
according to our experiments (Fig. 7), small in com-
parison to the time it takes to solve the linear system.

• Quality: The error of the approximation is the same
as in linear FEM if the rotation matrices Re = I
for the entire simulation. If all the Re are the same
but follow the rigid body transformation of the entire
mesh, our method outperforms linear FEM because
it produces the same forces as if the linear model
was re-computed in the rotated frame for every time
step and, thus, correctly produces zero forces for
pure rigid body transformations. When individual
Re’s are computed for every element, the approxi-
mation gets even better because it can then adopt to
local rotations.

2.4 Rotation of a Tetrahedron
There is a simple way to compute rotations Re of tetrahe-
dral elements. Let us look at a tetrahedron whose vertices
have coordinates p1, . . . ,p4 in the undeformed state and
q1, . . . ,q4 in the deformed state. The barycentric coor-
dinates β1, . . . , β4 of a point p with respect to the unde-
formed tetrahedron satisfy




p1x p2x p3x p4x

p1y p2y p3y p4y

p1z p2z p3z p4z

1 1 1 1


 ·




β1

β2

β3

β4


 =




px

py

pz

1


 (9)

or Pβ = p. The point q in the deformed tetrahedron that
corresponds to p has the same barycentric coordinates β
but with respect to the deformed tetrahedron

Qβ = q (10)

and, thus, combining Eqn. 9 and 10 we get

q = Qβ = QP−1p = Ap. (11)

The unique matrix A = QP−1 that describes the trans-
formation of the tetrahedron has the form

A =




B t

0 0 0 1


 , (12)

where t contains the translational part of the transforma-
tion and B the rotation and stretching parts. The 3 by 3
matrix B is independent of translations of both P and Q.
Finally, the rotational part of the transformation can be
extracted by a polar decomposition of B as proposed in
[5].

3 Plasticity Model

So far, our model is perfectly elastic, i.e. when exter-
nal forces are removed, the model returns to its origi-
nal shape. In contrast, an elasto-plastic material stores
part of the deformation and returns to a configuration be-
tween the deformed and undeformed state when the ex-
ternal forces are removed. In [15] O’Brien describes a
method for modelling plasticity. The method is used in
the context of non-linear FEM and explicit integration.
Here we show how it can be adopted to our framework,
namely linear, warped FEM in connection with implicit
integration. We also suggest a way to simulate plastic
creep, an effect not present in O’Brien’s model.

According to Eqn. (2) and our warped stiffness ap-
proach, a deformed tetrahedon is under a total strain of

εtotal = Be · û = Be(R−1
e x− x0). (13)

A plastic element stores plastic strain in a state variable
εplastic and only the difference between the total strain and
the plastic strain – the elastic strain – causes internal elas-
tic forces (see Fig. 3):

εelastic = εtotal − εplastic (14)

Note that these strains are six-dimensional vectors. The
state variable εplastic is initialized with 0. At every time
step, it is updated as follows:

εtotal ← Be(R−1
e x− x0)

εelastic ← εtotal − εplastic

if ||εelastic||2 > cyield : εplastic += ∆t · ccreep · εelastic

if ||εplastic||2 > cmax : εplastic *= cmax/||εplastic||2

First, the total and elastic strains are updated. The plas-
ticity model has three scalar parameters cyield, ccreep and

plast icf
totalf

elasticf

plast ic-f

original state plastic rest state deformed state

Figure 3: Relative to the original state the deformation of the
tetrahedron yields a force of ftotal. In a plastic material only
the offset force ftotal − fplastic relative to the plastic rest state
acts as elastic force felastic. Here, the stiffness is chosen such
that displacement equals force.

cmax. If the 2-norm of the elastic strain exceeds the
threshold cyield, the plastic strain absorbs part of it. If
ccreep ∈ [0 . . . 1/∆t] is 1/∆t, the elastic strain is imme-
diately and completely absorbed. Small values for ccreep

yield slow plastic flow in the material. The parameter
cmax defines the maximum plastic strain an element can
store. If the 2-norm of the plastic strain exceeds cmax, the
plastic strain is scaled down accordingly.

We integrate the effect of the plastic strain into Eqn.
(5) via corresponding plastic forces. This way the stiff-
ness matrices Ke of the elements do not have to be re-
computed. We use the definition of the stiffness matrix
from Eqn. (4) to compute the plastic forces fplastic that
correspond to εplastic:

fplastic = ReKeûplastic

= ReKeB−1
e · εplastic

= Re(VeBT
e EBe)B−1

e · εplastic

= ReVeBT
e E · εplastic

= RePe · εplastic

(15)

The plasticity matrix Pe = VeBT
e E that maps the plas-

tic strain to plastic forces is constant and can be pre-
computed for each element. At every time step we com-
pute the sum of the plastic forces coming from all ele-
ments and simply subtract them from Eqn. 5 to get

Mẍ + Cẋ + K′x + f ′0 − fplastic = fext. (16)

Since we only add a force vector fplastic to the equation of
motion at every time step, plasticity does not change the
condition of the linear system which needs to be solved.

4 Fracture Model

To complete our model, we propose a method, similar to
the ones described in [13] and [16], for animating mate-
rial tearing and fracture if internal stresses exceed a frac-
ture threshold.

The concept behind our fracture algorithm is to find
the maximum tensile stress σmax and its direction nmax

for every tetrahedral element and to fracture the model
normal to nmax if σmax exceeds the threshold of the ma-
terial. Thus, at every time step we compute, for each
tetrahedron, the stress tensor σ = EBe(R−1

e x− x0), its
largest eigenvalue σmax and its corresponding eigenvec-
tor nmax. If σmax exceeds the fracture threshold of the
material, we split the mesh as follows (see Fig. 4): First,
we select randomly one of the tetrahedron’s vertices that
is marked as a crack tip. If none of them are marked, we
randomly make a choice amongst all four vertices. We
do this for two reasons. First, because it is more likely
that an existing crack propagates than that a new one is
formed and second, because in real materials, randomly
located microscopic imperfections are the points where
cracks are initiated [7].

Once a vertex v is selected to be split, we virtually put
a plane α through v perpendicular to nmax. Then v is
split into two new vertices v+ and v−. For all tetrahedra
adjacent to v, their vertex v is replaced by either v+ or
v− depending on whether their center lies on the positive
or negative side of α. For all pairs of tetrahedra lying on
opposite sides of α who shared a common face (v, v1, v2)
before the split, two sides (v+, v1, v2) and (v−, v1, v2)
get exposed after the split and v1 and v2 are marked as
crack tips.

With this method the cracks can only go along the
tetrahedral boundaries which can result in visual artifacts.
A way to reduce them is to use a non-regular tetrahedral
mesh. We use this simple, fracture procedure for two
main reasons. First, it is very fast because the manip-
ulations in the mesh are minimal. Second, the stiffness
matrices Ke of the elements do not change. The way they
are added to the global stiffness matrix does change but
the summation is done at every time step anyway. Frac-
ture, thus, causes no computational overhead other than
some updates in the adjacency lists of the mesh. Also, as
with the plasticity modifications, fracture does not intro-
duce any instability to the linear system to be solved.

5 Surface Mesh Animation

Even though our method is fast enough to animate a few
thousand volumetric elements at interactive rates (Fig. 7),
a tetrahedral mesh with a resolution of this order cannot
represent a surface of appealing quality. A natural way to
solve this problem is to work with two different represen-
tations for the same object, a low resolution volumetric
mesh for the FEM simulation and a high resolution sur-
face mesh for rendering. This is a reasonable solution
because firstly, surface detail does not significantly af-
fect the physical behavior of an object and secondly, the
deformation field stored in the low resolution volumetric
mesh provides enough information to animate a detailed

α

σmax

α

+

+

+

-

-

-

v

+
v

−
v

cracktip

cracktip

Figure 4: Planar sketch of a vertex split in 3-d. To fracture a
tetrahedron, an adjacent vertex v is chosen. Plane α is placed
perpendicular to the maximum stress component σmax through
v. Then v is split into v+ and v−. Tetrahedra adjacent to v that
lie on the positive side of α are linked to v+, the others to v−.

e
R

Figure 5: Vertices of the surface mesh (shown in red) are dis-
placed according to the displacement field of the tetrahedron in
which they lie. The rotation of the tetrahedron Re is used to
rotate the normals.

surface mesh. Pentland et al. [17] made use of this gen-
eral idea by approximating deformation modes with poly-
nomial mappings. The approach we propose here is more
closely related to the work of Capell et al. [1] where a
coarse control mesh is used to compute dynamic defor-
mations of detailed surfaces.

5.1 Mesh Coupling
To animate a surface mesh consistently with a volumetric
mesh, we first link every vertex of the surface mesh to
the closest tetrahedron in the volumetric mesh and store
its barycentric coordinates with respect to that tetrahe-
dron. During the simulation, the position of each vertex
of the surface mesh is interpolated from the positions of
the linked tetrahedron using the stored barycentric coor-
dinates. An advantage of the warped stiffness algorithm
is that it computes the rotation Re of every tetrahedral
element which can directly be used to transform the nor-
mals stored in the undeformed surface mesh (see Fig. 5).
This simple algorithm works very well with elastic and
elasto-plastic deformation (see Figures 1 and 8).

5.2 Consistent Watertight Fracturing
When the volumetric mesh fractures as described in sec-
tion 4, the mesh coupling becomes more complicated.

There are two main problems that have to be solved:

• The vertices of the surface mesh and those of the
volumetric mesh are not aligned. The three vertices
of a surface triangle can be linked to different tetra-
hedra that can get detached by the fracture proce-
dure. Such a triangle has to be split to prevent the
surface from getting stretched like rubber across the
crack of the volumetric mesh.

• If a two-dimensional surface mesh is fractured, un-
acceptable holes will appear.

The method that we propose solves the aforemen-
tioned problems and keeps an initially watertight surface
mesh watertight throughout the entire simulation. The
two requirement for the procedure to work correctly are,
first, that the volumetric mesh totally contains the surface
mesh and second, that the surface mesh is a manifold.

The basic event in the fracture procedure of the volu-
metric mesh that triggers surface updates is the discon-
nection of two tetrahedra that share a face (v, v1, v2)
when vertex v is split. In this case two new faces
(v+, v1, v2) and (v−, v1, v2) with identical coordinates
are created in the volumetric mesh. The surface mesh is
updated in two steps (see Fig. 6).

First, it is cut along triangle Tv = (v, v1, v2), the com-
mon face along which the two tetrahedra are separated. If
Tv does not intersect the surface, this step is skipped.

The cut operation can be done using the undeformed
coordinates of both the volumetric and the surface mesh.
We use a uniform spatial grid to quickly find the triangles
of the surface mesh that intersect triangle Tv . By working
with undeformed coordinates, this grid does not need to
be updated when the object deforms.

In a second step, the holes in the surface are closed.
Therefore a new surface triangle at the location of Tv is
generated. This triangle is linked to the first tetrahedron
and a copy of it to the second one. These two triangles
close the hole. In the event that the new triangles reside
completely inside the surface, the second step is finished.
However, if Tv intersects the surface, the new triangles
are subdivided along the surface mesh resulting in a set
of smaller triangles of which those who lie outside the
surface are deleted.

6 The Algorithm

Now we are ready to put everything together and sum-
marize the entire simulation algorithm:

outside

inside

vT

sT

Tetra 1 Tetra 2

new surface

Figure 6: The surface mesh needs to be updated when two
tetrahedra that share side Tv are detached. First, the surface
mesh is cut along Tv . Then, a new surface triangle congruent
with Tv is subdivided along the surface mesh and the triangles
that are outside the surface are removed. The ones that are in-
side are linked to the first tetrahedron and identical copies to the
second one.

forall elements e compute Be,Pe,Ke from x0

initialize x0,v0

i← 0
loop

forall elements e compute Re based on xi

forall elements e update εplastic,e

assemble K =
∑

e ReKeR−1
e

assemble f0 = −∑
e ReKex0

assemble fplastic =
∑

e RePeεplastic,e

compute external forces fext

solve (M + ∆tC + ∆t2K)vi+1 =
Mvi −∆t(Kxi + f0 + fplastic − fext)
for vi+1

update xi+1 = xi + ∆tvi+1

forall elements e
compute stress σ = EBe(R−1

e x− x0)
if maximum eigenvalue of σ > fracture threshold

then fracture mesh
endfor
i← i + 1

endloop

7 Results

All the animations described in this section were com-
puted and rendered in real time on a 1.8 GHz Pentium
IV PC with a GForce 4 graphics card. For implicit in-
tegration we used a fixed time step of 0.01 seconds. To
generate tetrahedral meshes from surface meshes we used
the approach described in [14].

The computational cost of one time step dependent
on the number of animated tetrahedra for the linear and
warped stiffness approach is depicted in Figure 7. The
curves show that the additional work of computing rota-
tions and assembling the stiffness matrix is small in com-

0

50

100

150

200

0 1000 2000 3000 4000 5000

number of tetrahedra

m
s
 p

e
r

ti
m

e
 s

te
p

warped stiffness

linear

Figure 7: Computation time [ms] per time step against size of
the mesh for warped stiffness and linear FEM.

Figure 8: The snake on the left demonstrates large rotational
elastic deformations while the cow made of warm wax melts
plastically under gravity.

parison to the task of solving the linear system. We use
a conjugate gradients solver with a fixed number of itera-
tions (20 for our demos).

Figures 8 and 9 show the range of phenomena that
can be simulated at interactive rates with the method de-
scribed in this paper from large, purely elastic deforma-
tions (snake model), plastic deformation of warm wax un-
der gravity (cow), local plastic deformation caused by a
heat source (dragon) to fracture effects caused by user
applied forces. The parameters used for these animations
are summarized in Table 1. We made the entire simula-
tion framework with a variety of additional scenes and a
video available from www.matthiasmueller.info/demos.

8 Conclusions

We have presented a novel method for the real-time sim-
ulation of a wide range of material effects including elas-
ticity, plasticity, melting and fracture. The key to our
technique is a pseudo-linear elasticity model utilizing
the warped stiffness approach, which was extended to
avoid ghost forces and to make it amenable to plastic-
ity and fracture modeling. To enhance the visual quality
of our simulations, we developed algorithms to consis-

Figure 9: A heat source changes the material properties locally
(left). The surface mesh of the dragon fractures along with the
volumetric mesh when the model is pulled apart (right).

Model parameters Snake Cow Dragon

Tetrahedra 440 970 834
Triangles 22,000 5,800 10,000
Elast. Mod. [1e3N/m2] 100 50 100
Poisson Ratio [1] 0.33 0.33 0.33
Density [kg/m3] 1000 1000 1000
Yield stress [1e3N/m2] ∞ ∞ 60
Plastic yield [1] ∞ 0.01 0.10
Plastic creep [1/s] 0 100 1
Plastic max [1] 0 10 1

Table 1: Parameters used for the animations.

tently combine a high resolution skin mesh with a compu-
tational volumetric mesh of lower resolution keeping the
overall representation watertight at all times. Our method
is easy to implement, stable and, as we demonstrate, per-
forms robustly even in cases of extreme parameter set-
tings. In terms of material stiffness, our method covers
the gap between purely rigid objects – for which rigid
body simulators are best suited – and fluids that change
their topology because no connectivity is defined. In the
future, we plan to extend our algorithms towards fluid
flow simulation by including object representations that
can handle changes in topology.

9 Acknowledgements

This project was funded by the Swiss National Commis-
sion for Technology and Innovation (KTI) project no.
6310.1 KTS-ET.

References
[1] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovic.

Interactive skeleton-driven dynamic deformations. Proceedings
of ACM SIGGRAPH, pages 586–593, 2002.

[2] T. J. Chung. Applied Continuum Mechanics. Cambridge Univ.
Press, NY, 1996.

[3] R. D. Cook. Finite Element Modeling for Stress Analysis. John
Wiley & Sons, NY, 1995.

[4] G. Debunne, M. Desbrun, M. P. Cani, and A. H. Barr. Dynamic
real-time deformations using space & time adaptive sampling.
Proceedings of ACM SIGGRAPH, pages 31–36, 2001.

[5] O. Etzmuss, M. Keckeisen, and W. Straßer. A fast finite element
solution for cloth modelling. Proceedings of Pacific Graphics
2003, 2003.

[6] C. A. Felippa. A Systematic Approach to the Element-Independent
Corotational Dynamics of Finite Elements. Report CU-CAS-00-
03, Center for Aerospace Structures, Colorado, 2000.

[7] E. E. Gdoutos. Fracture Mechanics. Kluwer Academic Publish-
ers, Netherlands, 1993.

[8] S. F. Gibson and B. Mitrich. A survey of deformable models in
computer graphics. Technical Report TR-97-19, Mitsubishi Elec-
tric Research Laboratories, Cambridge, MA, 1997.

[9] E. Grinspun, P. Krysl, and P. Schroder. Charms: A simple frame-
work for adaptive simulation. Proceedings of ACM SIGGRAPH,
pages 281–290, 2002.

[10] D. James and D. K. Pai. Artdefo, accurate real time deformable
objects. Proceedings of ACM SIGGRAPH, pages 65–72, 1999.

[11] D. James and D. K. Pai. Multiresolution green’s function methods
for interactive simulation of large-scale elastostatic objects. ACM
Transactions on Graphics, 22(1):47–82, 2003.

[12] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler.
Stable real-time deformations. Proceedings of ACM SIGGRAPH
Symposium on Computer Animation, pages 49–54, 2002.

[13] M. Müller, L. McMillan, J. Dorsey, and R. Jagnow. Real-time
simulation of deformation and fracture of stiff materials. EURO-
GRAPHICS 2001 Computer Animation and Simulation Workshop,
pages 27–34, 2001.

[14] M. Müller and M. Teschner. Volumetric meshes for real-time
medical simulations. in Proceedings of BVM, pages 279–283,
2003.

[15] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins. Graphical mod-
eling and animation of ductile fracture. Proceedings of ACM SIG-
GRAPH, pages 291–294, 2002.

[16] J. F. O’Brien and J. K. Hodgins. Graphical modeling and anima-
tion of brittle fracture. Proceedings of ACM SIGGRAPH, pages
287–296, 1999.

[17] A. Pentland and J. Williams. Good vibrations: Modal dynamics
for graphics and animation. ACM Computer Graphics, 23(3):215–
222, 1989.

[18] C. Pozrikidis. Numerical Computation in Science and Engineer-
ing. Oxford Univ. Press, NY, 1998.

[19] J. Smith, A. Witkin, and D. Baraff. Fast and controllable sim-
ulation of the shattering of brittle objects. Computer Graphics
Interface, pages 27–34, May 2000.

[20] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation:
viscolelasticity, plasticity, fracture. In Proceedings of the 15th
annual conference on Computer graphics and interactive tech-
niques, pages 269–278. ACM Press, 1988.

[21] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically de-
formable models. Proceedings of ACM SIGGRAPH, pages 205–
214, 1987.

[22] A. Witkin and D. Baraff. Physically based modeling: Principles
and practice. Siggraph Course Notes, August 1997.

[23] A. Witkin and D. Baraff. Large steps in cloth simulation. Pro-
ceedings of ACM SIGGRAPH, pages 43–54, 1998.

[24] X. Wu, M. S. Downes, T. Goktekin, and F. Tendick. Adap-
tive nonlinear finite elements for deformable body simulation us-
ing dynamic progressive meshes. Eurographics, pages 349–358,
September 2001.

