
Pacific Graphics 2015
N. J. Mitra, J. Stam, and K. Xu
(Guest Editors)

Volume 34 (2015), Number 7

Grid-Free Surface Tracking on the GPU

1060

Figure 1: Four jets of liquid simulated with a particle-based simulation. Top: Computed with our GPU implementation. Bottom:
The result of the CPU implementation of Chentanez et al. [CM]. The methods produce similar meshes throughout the simulation.
Our parallel self-intersection removal step is 75 times faster and the mesh improvement step 20 times faster than the sequential
version. The overall speedup for this example is 50 times.

Abstract
We present the first mesh-based surface tracker that runs entirely on the GPU. The surface tracker is both com-
pletely grid-free and fast which makes it suitable for the use in a large, unbounded domain. The key idea for
handling topological changes is to detect and delete overlapping triangles as well as triangles that lie inside the
volume. The holes are then joined or closed in a robust and efficient manner. Good mesh quality is maintained
by a mesh improvement algorithm. In this paper we describe how all these steps can be parallelized to run effi-
ciently on a GPU. The surface tracker is guaranteed to produce a manifold mesh without boundary. Our results
show the quality and efficiency of the method in both Eulerian and Lagrangian liquid simulations. Our parallel
implementation runs more than an order of magnitude faster than the CPU version.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: —Computational Geom-
etry and Object Modeling Physically Based Modeling I.3.7 [Computer Graphics]: —Three-Dimensional Graphics
and Realism Animation and Virtual Reality

1. Introduction

In the past years, mesh based surface tracking has become a
relevant alternative to implicit methods in computer graph-
ics. Most recently, Chentanez et al. [CM] proposed a method
that is completely grid-free. To fix a mesh after the advection
of the vertices, they simply remove all intersecting triangles
and the triangles that are inside the liquid volume. After this
they triangulate the resulting holes to get a new closed and
manifold mesh.

The goal of our project was to parallelize this approach to
make it run entirely on a GPU. For this we had to efficiently
parallelize each individual step. For some of the steps, ef-
ficient parallel methods were available. In most cases, how-
ever, we had to devise new parallel algorithms which we will
present in this paper. Most of them are not limited to the spe-
cial case of surface tracking but are useful in other related
areas as well. Our main contributions include

• A parallel hole pairing algorithm

submitted to Pacific Graphics (2015)

2 1060 / Grid-Free Surface Tracking on the GPU

• A parallel hole filling algorithm
• A parallel algorithm for mesh improvement
To combine these components, our method makes intensive
use of dynamic parallelism [S.12], [HM14], i.e. the possibil-
ity of kernels to launch other kernels directly on the GPU.
This removes the need of expensive memory transfers be-
tween kernel calls.

2. Related Work
Various approaches for mesh based surface tracking have
been proposed so far. Müller [Mül09] move triangle mesh
vertices along the velocity field and handle topological
changes using a regular background grid. The intersections
of the mesh and the edges of the grid are computed and
then the marching cubes [LC87] method with an extended
stencil set is used for extracting the surface. Wojtan et al.
[WTGT09] also use a background grid. They identify cells
where the topology of the iso-surface defined by the grid
differs from the triangle mesh. In those cells they use the
marching cubes mesh and stitch it together with the sur-
rounding triangle mesh. Yu et al. [YWTY12] utilize this
method to track the liquid surface in particle-based simu-
lations. Wojtan et al. [WTGT10] improve the quality of the
their method by using the convex hulls of the vertices in-
stead of the marching cubes mesh in cells with overlap. They
also propose subdivision stitching which better preserves
features. Brochu and Bridson [BB09] use continuous col-
lision detection (CCD) to detect intersecting triangles dur-
ing vertex advection and move the vertices to avoid intersec-
tions. Their method guarantees an intersection free result,
albeit at a high computational cost. Topological merges and
splits are handled explicitly by surgical mesh operations. Da
et al. [DBG14] extend this approach to handle interfaces be-
tween more than two materials. They also introduce a more
efficient merging strategy based on vertex snapping. Bern-
stein et al. [BW13] propose a method for handling topo-
logical changes for non-closed, non-manifold meshes. After
moving mesh vertices, they compute exact triangle-triangle
intersections. For each input triangle, they use constrained
Delaunay triangulation [PC89] on the segments created by
intersecting triangles. The resulting triangles that are classi-
fied as being inside are deleted. Stanculescu et al. [SCC11]
move a vertex at a time and incrementally handle topological
changes. The distance a vertex can move in one time step is
bounded based on the maximum edge length allowed, so as
to simplify collision detection. Most recently, Chentanez et
al. [CM] propose to delete all intersecting triangles and tri-
angles that are classified as being inside the volume. Topo-
logical merges or splits are handled by joining or filling all
holes to obtain a manifold mesh. Our method is based on this
work with a number of important changes to make it more
GPU friendly.
There are a number of GPU based mesh processing works.
DeCoro and Tatarchuk [DT07] simplify a mesh on the
GPU by binning vertices to grid cells, compute a represen-

tative vertex for each cell and re-map triangle indices to
use the representative vertices. Degenerate triangles are re-
moved. Navarro et al. [NHS11] represent triangle meshes
with triangle-vertex, edge-vertex, and edge-triangle adja-
cency information. They perform parallel edge flips on the
GPU to construct a Delaunay mesh. The first thread that
works on an edge performs atomic operations to mark the
triangles involved. Other threads that would need to work
on a marked triangle are terminated to avoid race condi-
tions. Shontz and Nistor [SN13] simplify meshes with edge
collapses by dividing the work between the CPU and the
GPU. They lock vertices using test-and-set [AGTV92] to
avoid multiple threads working on the same vertex. Nasre et
al. [NBP13] propose several GPU algorithms for problems
that involve modifying the graph topology including Delau-
nay mesh refinement. The refinement algorithm deletes tri-
angles nearby a bad triangle, adds a new vertex and triangu-
lates the cavity. They propose a three-stage locking mecha-
nism to prevent GPU threads from fixing overlapping neigh-
borhoods. Gao et al. [GCTH13] proposed a flip-flop algo-
rithm for transforming star-shaped polyhedra to their convex
hulls and use them in convex hull construction algorithm.
They also ported their algorithm to the GPU and use a lock-
ing mechanism similar to Navarro et al. [NHS11] to avoid
flipping dependent triangles in the same pass. Papageorgiou
and Platis [PP15] simplify a mesh on the GPU using edge
collapses. They split the mesh into parts. Each GPU thread
block is responsible for identifying non-overlapping neigh-
bors within a part. Edge collapses are then performed on the
independent neighbors. The computation is repeated until
the target vertex count is reached. Our work utilizes edge
collapses in the mesh improvement step to get rid of short
edges or edges opposite from small dihedral angles.
Another important component used in our work are GPU
hash tables. Lefebvre and Hoppe [LH06] propose the use of
a perfect hash function without collisions for a given data
set. This results in a very fast lookup, but has an expensive
construction time. Alcantara et al. [ASA∗09] use a combi-
nation of perfect hashing and cuckoo hashing [PR04] to re-
duce the hash table construction time on the GPU. Garcia
et al. [GLHL11] propose a GPU parallel hashing scheme
based on Robin Hood hashing [CLM85] which results in
lowered construction times and more coherent memory ac-
cesses. Moazeni and Sarrafzadeh [MS12] implement a sep-
arate chaining hash table on the GPU. They use a lock free
mechanism [Mic02] using atomic compare and swap oper-
ations. Our hash table algorithms build on ideas from these
works.

3. Method
Our algorithm is based on the method of Chentanez et al.
[CM]. Its core steps are self-intersection removal and mesh
improvement. In this section we describe the changes we
made to these steps to make them run efficiently on a GPU.
The changes are shown on a high level in Algorithm 1.

submitted to Pacific Graphics (2015)

1060 / Grid-Free Surface Tracking on the GPU 3

Algorithm 1: Overview of the method.
1: Build a list D of intersecting triangles and triangles

with bad adjacent dihedral angles (§3.2)
2: if num_relax_iterations > 0 then
3: for i = 1 to num_relax_iterations do
4: Remove topological noise via a position based

relaxation of all the vertices adjacent to triangles
in D (§3.3)

5: end for
6: Rebuild D (§3.3)
7: end if
8: Append triangles that either are inside the volume or

have no valid velocity values to D (§3.4)
9: Delete all triangles in D and generate a list of boundary

vertices, B
10: loop
11: Ensure that the mesh is manifold (§3.5)
12: Identify holes (§3.6)
13: Pair and fill holes (§3.7 and §3.8)
14: if all holes are filled then
15: break
16: else
17: Delete triangles with edges adjacent to holes that

cannot be filled and replace D with the list of these
triangles and update B

18: end if
19: end loop
20: Improve the mesh quality via vertex smoothing, edge

splits and edge collapses while making sure that the
mesh remains manifold (§3.9)

21: Remove triangles that are marked for deletion, with a
parallel compaction

22: Remove vertices that are not referenced by any triangle,
using parallel compaction and re-map the vertex index.

3.1. Parallel Lock-Free Hash Tables

We made use of two kinds of hash table in our method. The
first kind is a spatial hash table [THM∗03] which takes as an
input a spatial location and returns objects such as triangles
or points in a close neighborhood. The second type imple-
ments a key-value map which we use to store attributes on
edges or pairs of holes. Both implementations allow paral-
lel accesses except when a hash collision occurs for a write
access. In that case, a GPU friendly lock-free mechanism is
used to resolve the collision. The read accesses can always
be done in parallel.

For a spatial hash table with up to n cells and m slots per
cell, we allocate n(1+m) entries. The first n entries store
the number of slots used per cell while the rest store the ac-
tual data. For a hash table insertion at cell (i, j,k), we first
compute the hash value h and then increment the number of
slots used in cell h atomically. If the number of slots used is
less than m we store the data in a new slot. Otherwise we go
to the next cell and retry. For a hash table lookup, we first
compute the hash location. Then, we search all slots of that

cell and all subsequent cells until we find a cell that uses less
than m slots.
To implement a key-value map, we allocate two arrays, one
to store keys and one to store the corresponding values. Ini-
tially, the entries of the key array are marked as invalid. To
insert a new key k, we first compute its hash value h. Then
we perform an atomic compare exchange operation with k
and the value at position h in the key array. If the result is in-
valid, location h was not used. In this case we store the value
to the value array at position h. If the result is k which means
key has been inserted before, we modify the value array at
position h. Otherwise we have a hash collision, and we move
on to the next entry of the key array. To store a value on an
edge (a,b) we use the key k = a << 32+ b, where k is a
64bit unsigned integer.

3.2. Parallel Identification of Intersecting Triangles
We use a boolean array to represent the deletion list D with
one entry per triangle which is true iff the triangle belongs to
D. To identify intersecting triangles we first initialize a spa-
tial hash table. For this we launch a kernel with one thread
per triangle. Each thread inserts a triangle reference to all
cells that intersect the triangle. We then launch a second ker-
nel, again with one thread per triangle which uses the hash
grid to identify intersecting triangles. As soon as a thread
identifies an intersection or a bad dihedral angle, it adds the
triangle to D and terminates. For the narrow phase we use
the same overlap tests as Chentanez et al. [CM].

3.3. Parallel Topological Noise Removal
As Chentanez et al. [CM], we perform a position based re-
laxation on the mesh when tracking the surface of a particle
based liquid simulation. We use averaged Jacobi iterations (5
in our examples) to modify the positions vi of the vertices.
Specifically we store a temporary sum of positions si and a
weight wi, both initialized to zero with each vertex. For each
triangle (vi,v j,vk) belonging to D, we then compute

si← si +αvi +(1−α)
v j + vk

2
, wi← wi +1, (1)

s j← s j +αv j +(1−α)
vi + vk

2
, w j← w j +1, (2)

sk← sk +αvk +(1−α)
vi + v j

2
, wk← wk +1, (3)

in parallel using atomic operations with α = 0.5. The vertex
positions are then updated in parallel

vi← si/wi (4)

if wi > 0. After the smoothing, the spatial hash is updated
for all triangles that have at least one adjacent vertex with
wi > 0. We then repeat the intersection test described in the
previous section but only for the modified triangles against
all other triangles. This whole topological noise removal step
can be skipped for grid based simulations as the velocity
field tends to be smoother.

submitted to Pacific Graphics (2015)

4 1060 / Grid-Free Surface Tracking on the GPU

3.4. Parallel Triangle-Inside-Volume Test
For grid based liquid simulations, we determine whether a
location is inside the liquid volume by casting a ray and
testing the parity of the intersections with the surface as in
Müller [Mül09]. First, three 2D hash tables are created for
the triangles projected onto the xy-, xz- and yz- planes by
iterating through all triangles in parallel. These hash tables
are used to speed up ray - triangle mesh intersections. We
then perform inside/outside tests for triangles not in D. If
D is determined correctly, it is sufficient to perform one ray
cast per cluster of connected triangles not in D instead of
checking all triangles individually. To make the method ro-
bust against numerical errors however, we perform individ-
ual tests for triangles in the q-ring neighborhood of D and
perform a fixed number of ray-casts for the clusters outside
this region as Chentanez et al. [CM].
To perform these two steps in parallel we first identify the
set of vertices Vq in a q-ring neighborhood of D. For this we
use a kernel that expands the set from Vi to Vi+1 and call it q
times, re-using the arrays Vi in a ping-pong manner. We then
define Dq to be the set of triangles adjacent to Vq.
To find clusters for triangles not in Dq we use an it-
erative method. First we initialize a cluster index c[i]
of vertex i to c[i] = i. Then we loop through each
triangle (i, j,k) in parallel. If it is not in Dq, we
compute m = min(c[i],c[j],c[k]) and m′ = c[c[m]]. Then
we perform atomicMin(c[i],m′),atomicMin(c[j],m′), and
atomicMin(c[k],m′) on the adjacent vertices. Using m′ in-
stead of m accelerates cluster expansion. We use 10 iter-
ations in our examples to get clusters of a size that sub-
stantially accelerates the inside/outside test. By storing the
cluster indices on the vertices instead of the triangles, no
triangle-triangle adjacency information is needed.
To test whether an entire cluster is inside the volume we
perform ray casts from w of its triangles as follows. Let
num_cast and num_inside be counters for each vertex. We
go through each triangle (i, j,k) in parallel. If the triangle is
not in Dq, we check if num_cast[c[i]] < w. If so, we atomi-
cally increment num_cast[c[i]] and recheck if it is still < w.
If so, we perform ray-casting from its barycenter to a main
axis direction that most align with normal. We then atomi-
cally increment or decrement num_inside[c[i]] if ray-casting
indicates that it is inside or outside, respectively.
Next we add all triangles that are inside the volume to D. For
this we can now use the cluster information. Specifically, we
add a triangle not in Dq if num_inside[c[i]] > 0, i.e. if its
cluster is marked to be inside. For the triangles in Dq we
have to perform individual ray casts from their barycenter.
We use q = 2 and w = 9 in the Eulerian liquid simulation
examples.
When using our surface tracker with particle based liquid
simulations the surface removal algorithm is simpler. In this
case we delete triangles that have one or more vertices with-
out valid velocity information or fail to be projected onto
surface as Chentanez et al. [CM].

In both simulation types we finally delete the triangles in D
in parallel by changing their vertex indices to (−1,−1,−1).
During this step, we also generate a boolean array B indi-
cating whether a vertex belongs to a deleted triangle. The
vertices in B that are still used by an undeleted triangle are
boundary vertices. B will allow us to skip a various compu-
tations in later steps.

3.5. Parallel Mesh Manifoldness Enforcement
From this step onwards we make extensive use of modern
GPU’s dynamic parallelism capability which allows kernels
to launch other kernels directly on the GPU. There are two
main reasons why this feature is required for an efficient
implementation. First, some parts of the algorithm require
conditional looping the termination conditions of which are
computed on the GPU. Second, the number of threads some
kernels need to launch is not known in advance but depends
on the results of other GPU computations. Without dynamic
parallelism, results would need to be read back to the CPU
for processing before launching the next kernel, which is in-
efficient. Instead we launch one initial kernel with one block
and one thread that launches all kernels of the remaining
steps.
We detect non-manifold vertices after triangle deletion by
counting adjacent boundary edges as Chentanez et al. [CM].
To do this in parallel we first construct a lock free unordered
edge hash table, He, by going through each triangle edge in
parallel. If both vertices are in B, we atomically increment
the edge count in He. We then go through each triangle edge
again in parallel and check if the count is 1 which indicates
that the edge is a boundary edge. In that case, we store the ID
of the adjacent triangle on the boundary edge and atomically
increase the boundary edge count of the two adjacent ver-
tices. We also store vertex → edge adjacency information.
Storing the IDs of the first two boundary edges for each ver-
tex is sufficient because if a vertex is adjacent to more than
two boundary edges, it is non-manifold and will be deleted
in the next step anyway.
To ensure manifoldness, we go through each triangle in par-
allel and delete it if it is adjacent to a vertex with a boundary
edge count greater than 2. D and B are updated incremen-
tally as well. We use a global boolean variable indicating
whether any triangle deletion happened in this step. If so,
we loop back to the construction of the unordered edge hash
table, edge counting and triangle deletion steps. The loop is
repeated until no triangle deletion happens. The entire loop
is executed on the GPU without CPU intervention with the
use of dynamic parallelism.

3.6. Parallel Hole Identification
In this step, we identify holes which are loops of boundary
edges. To do so, we perform parallel clustering of the ver-
tices using the boundary edges as connectivity in a similar
manner to the parallel clustering done for ray casting de-
scribed in Section 3.4. As a stop criterion we check whether

submitted to Pacific Graphics (2015)

1060 / Grid-Free Surface Tracking on the GPU 5

the hole index c[i] of all boundary vertices have not changed
in one iteration. This criterion is only tested every 10 itera-
tions.
We then compute the sizes of the holes by going through
each vertex i and if it is in B, atomically increment the
counter of the hole c[i]. In a further pass through all the ver-
tices we check if a vertex is a seed vertex, i.e. has i = c[i]
we check if the corresponding loop size is 3. Such a loop
can either be a dangling triangle which we delete by adding
it to D or a trivial hole which we close by adding a triangle.
This can be checked via the ID of the adjacent triangle of the
boundary edges of the hole. If the size is greater than 3, we
append the seed vertex to a list of holes, and store the hole’s
sizes in the list as well.
We then launch a kernel with a number of blocks equal to
the number of the remaining holes. Each block has only one
thread to collect all vertices in the hole using the edge→ ver-
tex and vertex→ edge adjacency information starting from
the seed vertex. After this step, we have a list consisting of
all vertices of all loops which we call L. We also store the ID
of the loop each vertex in L belongs to.

3.7. Parallel Hole Pairing
We now consider pairing the remaining holes that represent
topological merge or split events. Chentanez et al. [CM] use
two scoring criteria to decide whether a pair of holes (ha,hb)
should be joined or not. The first criterion considers the num-
ber of intersecting pairs of triangles that use vertices from hb
and ha. The second criterion considers the number of vertex
pairs (vi,v j) with vi ∈ ha,v j ∈ hb and ||vi−v j||2 ≤ gmax. We
omit the first criterion because an efficient parallel imple-
mentation would be quite involved and we found that the
second criteria alone is sufficient if the parameters are cho-
sen properly.
We compute the score of the second criterion by first popu-
lating a 3D spatial hash table with a cell size of gmax by all
vertices in L in parallel. We then go through each vertex in
L in parallel and look up the spatial hash table for nearby
boundary vertices. For each close vertex pair we atomically
increment the score of the corresponding pair of holes Si
which is stored in a pair hash table. During this step, ev-
ery time a new pair of holes is encountered, we append it to
a hole pair list, Pi = (ai,bi).
We sort P with a parallel bitonic merge sort [KW05] using
S as the key in ascending order. For each hole h j, let hp[j]
be the ID of hole pair in P to be used for pairing or −1 if
there is none. Let hg[j] be the temporary guess. We pair up
holes in a way that prioritizes the pairs with higher indices
and therefore larger scores using the atomic maximization
operations in Algorithm 2.
We use gmax = 3lmax and β = 0.25 in all of our particle based
examples and gmax = 2lmax and β = 0.25 for our grid based
example as opposed to gmax = 2lmax and β = 1 used by Chen-
tanez et al. [CM]. The lower β is used because we do not
use the first scoring criterion. We chose a larger gmax in the

Algorithm 2: Hole Pairing Algorithm
1: hp[j]←−1, in parallel
2: loop
3: hg[j]←−1, in parallel
4: if hp[ai] =−1 and hp[bi] =−1 and

Si ≥ β max(|hai |, |hbi |) then
5: atomicMax(hg[ai], i)
6: atomicMax(hg[bi], i)
7: end if, in parallel
8: if hg[ai] = i and hg[bi] = i then
9: hp[ai]← i

10: hp[bi]← i
11: end if, in parallel
12: break if nothing was changed
13: end loop

particle-based example because global vertex smoothing, to
be described Section 3.9, can move vertices by a small dis-
tance. A larger gmax allows correctly pairing even if vertices
move slightly relative to each other.

We are now ready to merge the pairs of holes. To merge a
pair, we identify the closest legal pair of edges ea and eb, one
from each hole. A pair of edges is legal if the quad formed
by the two edges can be triangulated with manifold edges.
Whether an edge is manifold can be checked by looking up
He to see if it exists in the mesh no more than once.

We identify the closest legal pairs of edges for all pairs of
holes in parallel by launching a kernel with the number of
blocks equal to the number of holes, each with t = 512
threads. For a hole ha, the first thread checks whether ha
appears first in the pair P[hp[a]] to make sure that only one
thread works on the pair. In this case, let hb be the hole ha is
to be joined with. Each thread of the block is responsible for
up to d|ha|/te edges of ha. Each thread searches for the clos-
est legal edge in eb by trying all possible choices in O(|hb|)
time. We then perform parallel reduction within each block
to obtain the closest legal pair. If the closest legal pair does
not exist, i. e. all pairs of edges searched yield non-manifold
triangulations, we skip merging this pair of holes. Otherwise,
we generate a new hole with a single boundary by adding a
quad between the closest edges and append the new hole ver-
tices to L. This is done in parallel by utilizing the t threads.
We then mark the holes ha and hb to be ignored for the re-
maining computation. Finally we update He to include the
edges of the quad.

3.8. Parallel Hole Filling
At this point, all the holes, both the ones that are the result of
joining two holes and the unjoined holes need to be triangu-
lated. The hole filling kernel creates one block per hole and
the threads of a block work together in parallel to fill each
hole.

As in Chentanez et al. [CM], our hole filling algorithm is
conceptually based on a recursive procedure. To compute the

submitted to Pacific Graphics (2015)

6 1060 / Grid-Free Surface Tracking on the GPU

optimal triangulation and cost W (i, j) of a polygon with ver-
tices i.. j, it finds the vertex k = K(i, j) ∈ {i.. j} such that
the combination of the optimal triangulations of polygon
(i..k), the triangle (i,k, j) and the optimal triangulation of
the polygon (k.. j) forms the optimal triangulation (see Fig-
ure 2). The exponential running time of this algorithm can
be reduced to O(n3) by dynamic programming, i.e. storing
intermediate results in a table, where n is the number of ver-
tices in the hole. Chentanez et al. use heuristics to reduce
the time complexity further to O(n2) computing an approx-
imation of the optimal result. Together with their optimality
criterion they find a triangulation that yields a manifold mesh
and minimizes the sum of squared edges lengths.
A first approach to construct a parallel hole filling algo-
rithm would be to parallelize the original O(n3) algorithm
which computes the optimal result as shown in Algorithm
3. Parallelization reduces its time complexity from O(n3) to
O(n2) given an unbounded number of threads. However, in
practice, holes with several thousands vertices can appear in
which case even a quadratic algorithm would be too slow
and kill the speedup of the GPU based surface tracker. We
still state the algorithm for readers with less time critical ap-
plications but who need the true optimum.

Algorithm 3: An O(n2) parallel bottom-up dynamic
programming algorithm for hole filling

1: for i = 1 to n in parallel do
2: for j = 1 to n do
3: legal(i, j)← edge (i, j) exists at most once in the

surrounding mesh (accelerated using He)
4: W (i, j)← ∞,K(i, j)←−1
5: end for
6: synchronize
7: W (i, i)← 0,K(i, i)← i, count← 0
8: for j = 1 to n do
9: if legal(i, j) then

10: W (i, i+2)← F(i, i+1, i+2)
11: K(i, i+2)← i
12: end if
13: end for
14: synchronize
15: for m = 3 to n do
16: j← i+m
17: if j ≤ n then
18: for k = i+1 to j−1 do
19: if legal(i,k) and legal(k, j) and

W (i, j)>W (i,k)+W (k, j)+F(i,k, j) then
20: W (i, j)←W (i,k)+W (k, j)+F(i,k, j)
21: K(i, j)← k
22: end if
23: end for
24: end if
25: synchronize
26: end for
27: end for

Another approach would be to parallelize the algorithm of

Chentanez et al. They suggest to use top-down dynamic pro-
gramming to compute an approximation to the optimal trian-
gulation with a serial time complexity of O(n2) in practice.
Directly parallelizing their solution to obtain an O(n) paral-
lel algorithm would not be suitable for a GPU implementa-
tion though because of the need for dynamic threads creation
or a centralized work queue. We therefore propose the GPU
friendly parallel bottom-up approach stated in Algorithm 4.
In the pseudo code,

F(i,k, j) = |(i,k)|2 + |(k, j)|2 + |(j, i)|2,

max_check_near is the maximum number of candidates for
vertex k to check for partition, and large_prime is a large
prime number. We use max_check_near = 30. The algorithm
runs independently for each hole. Each kernel block is re-
sponsible for filling one hole. The ith thread of each block
is responsible for the ith vertex of that hole. The threads in a
given block work together to compute all W (i, j) and K(i, j).
The hash table Hh, with cell size hmax = 3lmax is built at the
beginning and contains all vertices belonging to holes, which
are those in L.
We will now discuss the basic ideas behind our new ap-
proach. Three observations were made in Chentanez et al.
[CM]. The first observation is that W (i, j) tends to be min-
imized by a vertex k = K(i, j) that is spatially near both
vertices i and j. The second observation is that for nearby
choices of k, the cost does not differ much, so skipping some
of the choices of k most often leads to a nearly optimal
choice. The third observation is that if the vertices i and j
are far apart, this particular polygon is likely not the optimal
choice for the bigger sub-problem. These observations lead
to their proposed top-down algorithm.
Our algorithm also utilize these observations, albeit in a
bottom-up fashion so as to be more GPU friendly. First, we
only consider at most max_check_near geometrically close
by vertices. Only when this does not lead to a legal triangula-
tion, we try choices of k in a pseudo random order, utilizing
large_prime, until the first one that yields a legal triangula-
tion is encountered. We then use that legal choice right away.
If the number of possible k is ≤ max_check_near then all
choices are considered.
If there are enough threads, namely, one for each i, this par-
allel algorithm will run in O(n). In practice, however, we can
only use up to t = 512 threads per block due to hardware reg-
ister limitation. In that case each thread is responsible for n/t
vertices, so the running time becomes O(n2/t). In all of our
examples, most holes have n < t vertices. For the remain-
ing few large holes, n is also never larger than several thou-
sands, so this parallel algorithm has a time complexity close
to O(n) in practice. We note again that we compute W (i, j)
for all the holes in parallel so this step is substantially faster
than the CPU version.
After the W (i, j) of all holes are computed, we generate the
triangulation for each hole by tracing the K(i, j). This step
can be implemented using a stack data structure and runs

submitted to Pacific Graphics (2015)

1060 / Grid-Free Surface Tracking on the GPU 7

i

j

k

i

j

k

i

j

k

Figure 2: The optimal triangulation of the polygon (i.. j)
consists of the optimal triangulation of the polygons (i..k)
and (k.. j) and the triangle (i,k, j), where k = K(i, j) is the
vertex that minimizes the cost function, W (i, j).

in O(n). We generate triangulations for all holes in parallel
using one thread block per hole, each with one thread.

To ensure that the new triangles have no edge longer than
lmax, edge splits are performed in parallel on the newly gener-
ated triangles until all new edge lengths are below lmax. This
step is the same as what is used for improving mesh quality
and is discussed in detail in Section 3.9 except that we al-
low only edges between two new triangles to be split. Next
we perform parallel position based smoothing on the newly
generated vertices with α = 0.7 for 10 iterations. Finally,
the newly generated vertices are projected onto the closest
points on the old mesh, if the distance is smaller than lmax,
by looking up the nearby triangles in the 3D spatial hash ta-
ble. These steps are similar to Chentanez et al. [CM] but run
in parallel.

3.9. Parallel Mesh Improvement

The running time of the algorithm so far is roughly pro-
portional to the number of triangles. Therefore, it is crucial
to ensure that the triangles are reasonably well shaped, so
that the number of triangles is proportional to surface area.
Moreover, having well shape triangles reduces numerical
problems in intersection tests and results in less topological
noise, both of which slow down the algorithm. We employ
three mesh improvement strategies: vertex smoothing, edge
splits and edge collapses.

Applying vertex smoothing globally to improve a triangle
mesh smoothes out small scale features. Therefore, Chen-
tanez et al. [CM] and Wojtan et al. [WTGT09,WTGT10] do
not use it for mesh improvement. However, when using our
algorithm with particle based simulations, the vertices are
projected onto the iso-surface defined by the particles every
time step anyway, so a limited amount of smoothing does
not cause a visually significant loss of features. As will be
discussed in more details in Section 3.9.2, vertex smoothing
can reduce the number of required edge collapse passes sig-
nificantly. Therefore, for the particles simulation examples,
we apply parallel position based relaxation on all vertices
with α = 0.9 for 5 iterations. As grid based simulations do
not cause the mesh quality to degrade as quickly, we do not
need to apply vertex smoothing in this case.

Algorithm 4: Our O(n) parallel bottom-up dynamic pro-
gramming algorithm for computing approximately opti-
mal triangulation.

1: for i = 1 to n in parallel do
2: for j = 1 to n do
3: legal(i, j)← edge (i, j) exists at most once in the

surrounding mesh (accelerated using He).
4: W (i, j)← ∞,K(i, j)←−1
5: end for
6: synchronize
7: W (i, i)← 0,K(i, i)← i, count← 0
8: for j = 1 to n do
9: if legal(i, j) then

10: W (i, i+2)← F(i, i+1, i+2),K(i, i+2)← i
11: end if
12: end for
13: synchronize
14: for m = 3 to n do
15: j← i+m, all← false
16: if (j < n) and |(i, j)|< hmax then
17: if m≤ max_check_near then
18: all← true
19: else
20: for each vertex i < k < j of the same hole within

distance hmax to vertex i in Hh do
21: if legal(i,k) and legal(k, j) and

W (i, j)>W (i,k)+W (k, j)+F(i,k, j) then
22: W (i, j)←W (i,k)+W (k, j)+F(i,k, j)
23: K(i, j)← k
24: end if
25: count← count + 1
26: if (count > max_check_near) break;
27: end for
28: end if
29: end if
30: if K(i, j)←−1 then
31: l← m−1
32: q← large_prime mod l
33: for s = i+1 to j−1 do
34: k← i+1+q,q← (q+ large_prime) mod l
35: if legal(i,k) and legal(k, j) and

W (i, j)>W (i,k)+W (k, j)+F(i,k, j) then
36: W (i, j)←W (i,k)+W (k, j)+F(i,k, j)
37: K(i, j)← k
38: if not all break
39: end if
40: end for
41: end if
42: synchronize
43: end for
44: end for

submitted to Pacific Graphics (2015)

8 1060 / Grid-Free Surface Tracking on the GPU

Figure 3: Stencil table for splitting a triangle.

a b a b a b

Figure 4: Collapsing edge (a,b). One-ring neighbors of a
and b are marked by red squares and blue stars respectively.
Left most) An example of a legal edge collapse. Middle and
Right) Examples of illegal edge collapses that result in a
non-manifold mesh. Vertices other than the ones opposite
from the edge (a,b) that are both neighbor to a and b are
pointed by arrows.

3.9.1. Parallel edge split
Edge splits are usually done by adding a vertex and divid-
ing the two adjacent triangles into four triangles. This ap-
proach cannot be parallelized efficiently because adjacent
edges are not independent and cannot be split in the same
parallel pass. Many passes are therefore required for split-
ting all long edges in the mesh.
Therefore we use an alternative approach. In a first pass, we
go through all edges in parallel and put those that should be
split into an edge hash table. An edge should be split if it is
longer than lmax and the opposite angle is greater than 10◦.
The first time an edge is put into the hash table, we create
a new vertex at the mid point. In the second pass, we go
through all triangles in parallel. We then check which edges
of the triangle are split. We then replace the triangle with
up to four new triangles by looking up a table as shown in
Figure 3. Instead of replacing existing triangles, we set their
indices to -1. The new triangles are appended to the triangles
indices list with atomic operations. In this way, we can be
sure that all new triangles are at the end of the indices list.
This is useful in case we want to run further smoothing as
done in hole filling. We repeat the two passes to further split
edges that are still long, until no new edge is split. In our
examples, no more than four iterations are needed, as edges
do not become longer very fast in a single time step.

3.9.2. Parallel edge collapse
We consider an edge for potential collapse if it is either
shorter than lmin or it is opposite from an angle smaller than
5◦. We also need to ensure that collapsing this edge does not
create non-manifold edges or non-manifold vertices. This
can be checked by ensuring that the one ring neighbors of
the two end points of the edge overlap only at the two ver-
tices opposite from the edge, as shown in Figure 4.
To be able to collapse edges independently in parallel, we
need to ensure that edges that will be collapsed in the same
parallel pass are not within 2-ring neighbors of others. To do

so, we have locki for each vertex which are initialized to -1.
We go through each edge in parallel and check if it should
be collapsed, if so, we atomicMax the edge ID on the locks
of the two endpoints. We then propagate the lock value to
adjacent vertex with atomicMax, so that if two IDs are to
be written to the same lock, the one with higher value would
win. This can be done for each triangle in parallel. We do the
propagation twice. Now, if an edge (i, j) still have locki and
lock j equal to its ID, we can be sure that no other edge within
2-ring neighbor would be collapsed in this pass. We mark all
such vertices i and j to indicate that they participate in edge
collapse in this pass, by checking each edge in parallel.
We now need to ensure that collapsing the edges does not
cause non-manifoldness. We check this by going through
each triangle (i, j,k) in parallel. If exactly one of its vertices
is marked, we atomically increment counters on the other
two vertices by one. If the value of a counter after the in-
crement is two or more, the one ring neighbors overlap and
hence the edge involving the marked vertices should not be
collapsed. In this case, we unmark the previously marked
vertex. Now, all the edges (i, j) whose locki and lock j match
with the edge ID and whose endpoints are marked can be
safely collapsed. We collapse them in parallel by re-mapping
all triangles that use the endpoint with the smaller index to
the other endpoint and mark triangles with duplicated in-
dices for deletion by changing the indices to -1. We also
reposition the vertex with the smaller index to the midpoint.
Not all possible edge collapses are performed in one parallel
pass, however, because only edges that are two rings apart
from each other are collapsed. In our particle based simula-
tion examples with highly turbulent velocity fields, hundreds
of passes are sometimes needed in order to collapse all pos-
sible edges. In this case, the edge collapsing step becomes
the bottle neck of the entire mesh tracker pipeline. On the
other hand, limiting the number of passes per time step to a
fixed number like 30 causes the mesh quality to degrade over
time, causing numerical problems, a slowdown of the other
steps and poor visual quality.
We fix this problem by performing a limited amount of ver-
tex smoothing prior to the edge split and edge collapse steps
as already mentioned. This reduces the number of required
edge collapse passes from hundreds to tens. In all our exam-
ples, we clamp the number of passes to 30 per time step. In
grid based simulations, short edges appear more slowly and
the smoothing step can be skipped.
Another important check we also do is that we store the
edges that we know to cause non-manifoldness in an edge
hash table. These edges are not considered for collapses in
later passes, by skipping the their locking step. This allow
other nearby edges with lower edge ID to be considered in-
stead in later passes.

4. Results
We implemented our algorithm using CUDA and used it for
tracking surfaces in a number of examples. For all the tim-

submitted to Pacific Graphics (2015)

1060 / Grid-Free Surface Tracking on the GPU 9

Self Intersection Removal Mesh Improvement
3DHash Intersect Relax&Update 2DHash DeleteTris Manifold&Fill VS ES EC RemUnused NumTris

avg max avg max avg max avg max avg max avg max avg max avg max avg max avg max avg max
Jets 2.46 3.59 27.48 38.87 - - 1.96 2.80 24.95 46.63 11.30 16.72 - - 0.84 1.22 31.57 51.92 0.90 1.63 520K 734K

BallSplash 0.92 2.06 8.94 39.48 2.72 12.91 - - 0.07 0.14 13.82 119.45 0.46 1.94 0.50 1.16 15.84 39.14 0.55 1.31 228K 527K
Fountain 4.58 9.51 43.68 106.26 7.63 20.89 - - 0.28 0.66 33.33 141.47 1.29 3.72 1.83 4.09 73.05 165.00 1.24 2.42 927K 1733K
Balloon 9.88 14.49 136.99 246.55 50.41 77.08 - - 0.70 1.13 41.44 120.77 9.34 14.57 3.96 6.08 170.34 272.94 2.13 3.33 1832K 2742K

Table 1: Breakdown of the running times per step of our method in the examples. All times are in milliseconds. "3DHash" stands
for the 3D hash table construction, "Intersect" for computing the initial triangle intersections, "Relax&Update" for topological
noise removal, hash table updates and intersections, "2D Hash" for the construction of the 2D hash tables for fast ray casting,
"DeleteTris" for deleting intersecting triangles and triangles inside the liquid volume, "Manifold&Fill" for ensuring that the
mesh is manifold, join holes and fill holes, "VS" for global vertex smoothing, "ES" for edge splitting, "EC" for edge collapsing,
"RemUnused" for removing unused vertices and triangles and "NumTris" for the number of triangles.

Figure 5: Two streams of liquid collide in mid-air to form
thin sheets before falling on the floor. The scene is simulated
with a grid based fluid solver. Top: Our method. Bottom:
Chentanez et al. The results are visually similar. Our method
is about 28 times faster overall.

ings we used an NVIDIA GTX TitanX GPU. Table 1 shows
the running times of the steps of our algorithm. We used the
same examples and setup as Chentanez et al. [CM] to be able
to do a direct comparison.
For a grid based simulation test, our benchmark scene is the
two colliding jets example shown in Figure 5. To test our
method with a particle-based simulation, we used the scene
of two colliding balls shown in Figure 6, the fountain scene
shown in Figure 1 and the balloon burst simulation of Fig-
ure 7. Table 2 summarizes the speed up of our method rela-
tive to the sequential CPU version of Chentanez et al. which
was run on a 3.40GHz Intel Core i7-4930K with 16GB of
RAM using a single thread. The self-intersection removal
step combined with mesh improvement step is between 21
to 50 times faster than the CPU version in our examples. As
the figures and the accompanying video show, both works
produce meshes of similar quality.

5. Conclusion and Discussion
We have presented the first explicit surface tracking method
that runs completely on a GPU more than an order of mag-
nitude faster than the serial CPU implementation. For this
we had to parallelize all steps individually resulting in new
algorithms that can potentially be used in other applications
as well. As future work we plan to improve the most criti-

Figure 6: Two liquid balls colliding in mid-air simulated
with a particle-based liquid simulation. Top: Our method.
Bottom: Chentanez et al. Again, the results are visually sim-
ilar. In this case, our method is about 21 times faster overall.

Figure 7: A balloon filled with liquid is shot by a fast moving
projectile simulated with a particle-based based solver. Top:
Our method. Bottom: Chentanez et al. Here we achieve a
speedup of 29 times.

submitted to Pacific Graphics (2015)

10 1060 / Grid-Free Surface Tracking on the GPU

cal part of our pipeline, namely the edge collapse step. The
mesh improvement step is currently "only" between 16 and
20 times faster than the CPU counter part reducing the over-
all speedup. A fast solution would also remove the need of
a global smoothing step that could potentially remove some
small scale details.

References
[AGTV92] AFEK Y., GAFNI E., TROMP J., VITANYI P.: Wait-

free test-and-set. In Distributed Algorithms, Segall A., Zaks S.,
(Eds.), vol. 647 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1992, pp. 85–94. 2

[ASA∗09] ALCANTARA D. A., SHARF A., ABBASINEJAD F.,
SENGUPTA S., MITZENMACHER M., OWENS J. D., AMENTA
N.: Real-time parallel hashing on the gpu. In ACM SIGGRAPH
Asia 2009 Papers (New York, NY, USA, 2009), SIGGRAPH
Asia ’09, ACM, pp. 154:1–154:9. 2

[BB09] BROCHU T., BRIDSON R.: Robust topological operations
for dynamic explicit surfaces. SIAM Journal on Scientific Com-
puting 31, 4 (2009), 2472–2493. 2

[BW13] BERNSTEIN G. L., WOJTAN C.: Putting holes in holey
geometry: Topology change for arbitrary surfaces. ACM Trans.
Graph. 32, 4 (July 2013), 34:1–34:12. 2

[CLM85] CELIS P., LARSON P.-Å., MUNRO J. I.: Robin Hood
hashing. pp. 281–288. 2

[CM] CHENTANEZ N., M M.:. 1, 2, 3, 4, 5, 6, 7, 9, 10

[DBG14] DA F., BATTY C., GRINSPUN E.: Multimaterial mesh-
based surface tracking. ACM Trans. on Graphics (SIGGRAPH
2014) (2014). 2

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the GPU. In Symposium on Interactive 3D Graphics
(I3D) (Apr. 2007), vol. 2007, p. 6. 2

[GCTH13] GAO M., CAO T.-T., TAN T.-S., HUANG Z.: Flip-
flop: Convex hull construction via star-shaped polyhedron in 3d.
In Proceedings of the ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games (New York, NY, USA, 2013), I3D
’13, ACM, pp. 45–54. 2

[GLHL11] GARCÍA I., LEFEBVRE S., HORNUS S., LASRAM
A.: Coherent parallel hashing. ACM Trans. Graph. 30, 6 (Dec.
2011), 161:1–161:8. 2

[HM14] HOWES L., MUNSHI A.: The opencl specification.
Khronos OpenCL Working Group (2014). 2

[KW05] KIPFER P., WESTERMANN R.: Improved GPU sorting.
In GPUGems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (2005), Pharr M.,
(Ed.), Addison-Wesley, pp. 733–746. 5

CS CM GS GM SpS SpM SpO
Jets 2338 572 70 33 33X 17X 28X
BallSplash 628 319 28 17 22X 19X 21X
Fountain 6880 1468 91 77 75X 19X 50X
Balloon 9646 2767 241 184 40X 15X 29X

Table 2: Average timing of Chentanez et al. [CM] compared
to ours. The C- and G-prefixes indicate times in ms for Chen-
tanez et al. [CM] and our GPU implementation. The S- and
M-suffixes indicate the self intersection removal step and the
mesh improvement steps respectively. The O-suffix indicates
self-intersection removal plus mesh improvement. Sp stands
for the speedup of the GPU over the CPU implementation.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph. 21, 4 (Aug. 1987), 163–169. 2

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. In
ACM SIGGRAPH 2006 Papers (New York, NY, USA, 2006),
SIGGRAPH ’06, ACM, pp. 579–588. 2

[Mic02] MICHAEL M. M.: High performance dynamic lock-free
hash tables and list-based sets. In Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architec-
tures (New York, NY, USA, 2002), SPAA ’02, ACM, pp. 73–82.
2

[MS12] MOAZENI M., SARRAFZADEH M.: Lock-free hash ta-
ble on graphics processors. In Application Accelerators in High
Performance Computing (SAAHPC), 2012 Symposium on (July
2012), pp. 133–136. 2

[Mül09] MÜLLER M.: Fast and robust tracking of fluid surfaces.
In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (New York, NY, USA, 2009),
SCA ’09, ACM, pp. 237–245. 2, 4

[NBP13] NASRE R., BURTSCHER M., PINGALI K.: Morph al-
gorithms on gpus. SIGPLAN Not. 48, 8 (Feb. 2013), 147–156.
2

[NHS11] NAVARRO C., HITSCHFELD N., SCHEIHING E.: A
parallel gpu-based algorithm for delaunay edge-flips. In 27th
European Workshop on Computational Geometry (EuroCG)
(Morschach, Switzerland, Mar 2011), Hoffmann M., (Ed.),
pp. 75–78. 2

[PC89] PAUL CHEW L.: Constrained delaunay triangulations. Al-
gorithmica 4, 1-4 (1989), 97–108. 2

[PP15] PAPAGEORGIOU A., PLATIS N.: Triangular mesh simpli-
fication on the gpu. The Visual Computer 31, 2 (2015), 235–244.
2

[PR04] PAGH R., RODLER F. F.: Cuckoo hashing. J. Algorithms
51, 2 (May 2004), 122–144. 2

[S.12] S. J.: Introduction to dynamic parallelism. GPU Technol-
ogy Conference (2012). 2

[SCC11] STANCULESCU L., CHAINE R., CANI M.-P.:
Freestyle: Sculpting meshes with self-adaptive topology.
Comput. Graph.-UK 35, 3 (June 2011), 614–622. Special Issue:
Shape Modeling International (SMI) Conference 2011. 2

[SN13] SHONTZ S., NISTOR D.: Cpu-gpu algorithms for trian-
gular surface mesh simplification. In Proceedings of the 21st
International Meshing Roundtable, Jiao X., Weill J.-C., (Eds.).
Springer Berlin Heidelberg, 2013, pp. 475–492. 2

[THM∗03] TESCHNER M., HEIDELBERGER B., MUELLER M.,
POMERANETS D., GROSS M.: Optimized spatial hashing for
collision detection of deformable objects. pp. 47–54. 3

[WTGT09] WOJTAN C., THÜREY N., GROSS M., TURK G.:
Deforming meshes that split and merge. ACM Trans. Graph. 28,
3 (July 2009), 76:1–76:10. 2, 7

[WTGT10] WOJTAN C., THÜREY N., GROSS M., TURK G.:
Physics-inspired topology changes for thin fluid features. ACM
Trans. on Graphics (Proc. SIGGRAPH) 29, 3 (2010). 2, 7

[YWTY12] YU J., WOJTAN C., TURK G., YAP C.: Explicit
mesh surfaces for particle based fluids. EUROGRAPHICS 2012
30 (2012), 41–48. 2

submitted to Pacific Graphics (2015)

