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Figure 1: Long range constraints propagate errors through large stacks or long chains instantaneously and make it possible to
simulate the depicted scenes with a small number of solver iterations.

ABSTRACT
The two main constraints used in rigid body simulations are con-
tacts and joints. Both constrain the motion of a small number of
bodies in close proximity. However, it is often the case that a series
of constraints restrict the motion of objects over longer distances
such as the contacts in a large pile or the joints in a chain of rigid
bodies. When only short range constraints are considered, a large
number of solver iterations is typically needed for long range ef-
fects to emerge because information has to be propagated through
individual joints and contacts.

Our basic idea to signi�cantly speed up this process is to analyze
the contact or joint graphs and automatically derive long range
constraints such as upper and lower distance bounds between bod-
ies that can potentially be far apart both spatially and topologically.
The long range constraints are either generated or updated at every
time step in case of contacts or whenever their topology changes
within a joint graph. The signi�cant increase of the convergence
rate due to the use of long range constraints allows us to simu-
late scenarios that cannot be handled by traditional solvers with a
number of solver iterations that allow real time simulation.
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• Computing methodologies → Physical simulation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SCA ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5091-4/17/07. . . $15.00
DOI: 10.1145/3099564.3099574

KEYWORDS
rigid body simulation, position based simulation, long range con-
straints

ACM Reference format:
Matthias Müller, Nuttapong Chentanez, Miles Macklin, and Stefan Jeschke.
2017. Long Range Constraints for Rigid Body Simulations. In Proceedings of
SCA ’17, Los Angeles, CA, USA, July 28-30, 2017, 10 pages.
DOI: 10.1145/3099564.3099574

1 INTRODUCTION
Rigid body simulation is an important �eld in robotics where it
allows the study of systems virtually before they are built. Biome-
chanics is another research area in which rigid body simulations
play a key role for modelling skeletal dynamics. In both cases,
the number of simulated bodies is relatively small and accuracy
is essential. This is in contrast to physically based animation in
computer graphics, speci�cally in �lms and computer games where
scenes can be composed of thousands of individual bodies. Here
the emphasis lies on robustness and simplicity rather than accu-
racy. As a result, most physics engines use linear, velocity based
projected Gauss-Seidel or Jacobi methods to solve the underlying
linear complementarity problems.

It is a well known fact that iterative local solvers converge slowly
which is problematic in the case of tall piles or long chains of
jointed bodies. A variety of tricks has been proposed to alleviate this
problem. An example is the so called "shock propagation method"
[Guendelman et al. 2003] for the stable simulation of stacking. The
basic idea is to solve the bodies in layers from bottom to top. Each
solved layer is frozen by assigning in�nite mass to the respective
bodies. This method is e�ective but not physically correct and can
yield noticeable visual artifacts.

In this paper we propose the concept of long range constraints
that can be derived automatically from a series of local constraints,
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speci�cally from joints or contacts. The two cases are treated simi-
larly in that the constraints are derived from a graph. They di�er in
the way the graphs are generated. For joints, the graph is provided
by the user and only changes when joints are added, removed or
when joint properties changed. The contact graph is derived or
updated at each time step from the generated contacts and their
properties. We use a contact graph that is dual to the traditional
version. Instead of interpreting bodies as nodes and contacts as
edges, our nodes represent contacts and edges connect pairs of
contacts that a�ect the same body.

We propose di�erent types of long range constraints. Of the
�rst type are unilateral lower and upper distance bounds between
pairs of bodies that can potentially be far apart, both spatially and
topologically. These can be interpreted as generalizations of Long
Range Attachment (LRA) [Kim et al. 2012] for rigid body systems.
The second type is a projection of joints into a plane for chains
of bodies connected by hinge joints. Example applications of this
type of constraint are tracks of tanks or excavators or robot arms.
The third type is a shape matching constraint that can be used to
simulate fracture with pre-fractured models. The fourth type of
long range constraint restricts the direct distance to the ground of
contact points and bodies at any height in stacks.

Our main contributions are

• The concept of long range constraints in rigid body simu-
lations.

• Generalized unilateral long range distance constraints and
their derivation from a joint graph taking potential angle
limits into account.

• A global plane projection to satisfy hinge joint constraints
in long chains.

• Generalized shape matching for handling graphs of �xed
joints.

• An automatic derivation of long range distance constraints
from the dual contact graph with contacts as nodes and
bodies as links.

2 RELATEDWORK
There is a large body of work on the simulation of rigid bodies
from various research �elds such as mechanics [Amirouche 2006],
robotics [Siciliano and Khatib 2007] and biomechanics [Delp et al.
2007]. Armstrong and Green [1985], Hahn [1988] and Bara� [1989]
were among the �rst to introduce rigid bodies to computer graphics.
The most popular approach to rigid body simulation are impulse
based methods [Mirtich 1996], [Eberly 2010] but a variety of others
possibilities have been proposed. Discussing the literature on rigid
body simulations in computer graphics is beyond the scope of our
paper. Instead we refer the reader to the recent survey of [Bender
et al. 2014]. Also, our approach is orthogonal to the choice of the
underlying rigid body solver. Long range constraints can potentially
be added to any existing rigid body engine. However, since the
constraints we will discuss are all position based, they are most
naturally integrated with a position based solver.

The position based approach was introduced to computer graph-
ics by Jakobsen [2001] to solve a set of distance constraints using
a Verlet integrator. Müller et al. [2006] generalize the method to
handle arbitrary position based constraints such as bending and

volume conservation. They store velocities explicitly, which makes
damping and friction handling easier. The paper also introduced
the term Position Based Dynamic (PBD) to refer to this method.
Two main papers exist on the simulation of rigid bodies in the
PBD framework. Macklin et al. [2014] used a collection of parti-
cles bound by shape matching constraints [Müller et al. 2005] to
represent rigid objects. In contrast, Deul et al. [2014] added the han-
dling of rotational degrees of freedoms to PBD which allowed them
to simulate rigid bodies as single six degrees of freedom entities.
They also discussed ways to simulate the two way interaction with
deformable objects. A thorough overview of PBD methods can be
found in [Bender et al. 2015]. While being stable for large time steps
and versatile, the original PBD approach su�ered from sti�ness
being time step and iteration count dependent. Macklin et al. [2016]
introduced the XPBD method to addresses this problem. They store
and sum up each constraint’s scalar Lagrange multiplier which
allows one to specify the compliance (true time step independent
inverse sti�ness) of each constraint. We employ XPBD in our work.

As mentioned before, we address the problem of slow conver-
gence of iterative solvers in the presence of a large number of
constraints such as in large stacks or long chains. To improve the
convergence and stability of stacks, Hahn et al. [1988] construct a
contact graph which approximately identi�es layers of bodies rest-
ing on top of other. From this graph they derive a bottom-up order
in which the contacts are solved. Shock propagation is based on a
similar idea and was introduced in [Guendelman et al. 2003]. Here,
the contacts are also solved in layers from bottom to top. However,
for each layer, all bodies below the current layer are treated as
having in�nite mass. This method e�ectively prevents bodies from
sinking into each other but can, as the authors mention, create
noticeable artifacts such as unstable stacks being steady. Therefore,
they recommend to run enough traditional solver iterations before
applying their method. Erleben [2007] utilizes shock propagation
in velocity-based rigid body simulation. Tsuda [2009] proposes to
increase the mass of the already solved bodies instead of making
it in�nite which reduces the problems with unstable stacks. The
shock propagation method is inherently non parallel. To solve this
problem, Macklin et al. [2014] do not specify the order in which
contacts are solved but scale the masses of objects in stacks de-
pendent on their height above the ground to improve convergence
speed. Another idea used in rigid body engines to stabilize stacking
is to reduce the gravitational force inside piles of objects. All these
methods with the exception of only modifying the solution order,
are non-physical and can potentially introduce visual artifacts.

A number of methods have been proposed to accelerate the
simulation of jointed objects like robot arms, ropes, cables and
hair strands. One idea is to use generalized coordinates which al-
ways satisfy the positional constraints of joints and therefore, make
stretching impossible. Probably the most popular approach in this
�eld is Featherstone’s algorithm [Featherstone 1987]. The method
is not as popular in graphics as in other �elds, however, because it
is not applicable to circular structure and is more complicated, less
parallel and less stable than other methods. Bara� [1996] proposed a
constraint solver that takes advantage of the sparse structure of the
system matrix arising from a hierarchical articulation. In contrast
to Featherstone’s method, it operates in maximal coordinates rather
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than reduced coordinates, and can be extended to closed loops
with some additional cost and complexity. Unlike their method, our
solver does not assume any particular structure in the constraint set
which makes it more general and simpli�es parallelization and the
integration into existing solvers. Tomcin et al. [Tomcin et al. 2014]
proposed techniques to e�ciently solve closed loop articulation
constraints. In contrast to our approach, they do not introduce new
constraints but improve the structure of the given system matrix
with techniques like regularization and body splitting.

Applying the shock propagation idea to strands yields the the Fol-
low The Leader (FTL) approach in which the particles are handled
from head to tail, always assuming the upstream particle to have in-
�nite mass. This method has been used for quasi-static simulations
of knot-tying in [Brown et al. 2004]. Similar to shock propagation,
this method is non-physical, a fact that does not show in the quasi
static case but becomes apparent in dynamic simulations as dis-
cussed in [Müller et al. 2012]. To make fur and hair inexensible,
Kim et al. [2012] introduced Long Range Attachments (LRA). In-
stead of propagating information along adjacent particles/bodies,
they attach each particle directly to the attachment point. Since
the attachment point on a character is kinematic, assigning in�-
nite mass to it is physically correct. Therefore the method does
not introduce artifacts and signi�cantly reduces the number of
required solver iterations. Our �rst type of long range constraint
is a generalization of this idea. For circular structures our method
is more closely related to hierarchical PBD [Müller 2008]. Finally
Sueda et al. [2011] proposed a method to simulate long strands in
highly constrained scenarios e�ectively by introducing a number
of specialized constraints. However, these have to be setup by hand
for the various objects in the scene which makes the method less
practical than other approaches in general scenarios.

3 LONG RANGE CONSTRAINTS
We de�ne long range constraints as constraints that restrict the mu-
tual motion of pairs or groups of bodies not immediately connected
via joints or contacts. Our goal is to derive long range constraints
automatically from a set of local constraints. We propose four types
of long range constraints which we will describe in the following
sections. Of course, these do not cover all possibilities. From our
basic idea, many more long range constraint types can be devised
and we hope to stimulate further research in this direction.

3.1 Long Range Attachments
Our �rst type of long range constraint can be viewed as a gener-
alization of long range attachments (LRA) [Kim et al. 2012]. The
traditional LRA are upper distance bounds for particles attached
via a series of edges to a kinematic attachment point. In the case of
a hair strand, each particle in the strand is constrained to remain in
the sphere with radius r around the attachment point on the head,
where r is the sum of all the edge lengths between the particle and
the attachment point. These additional long range constraints let
the hair look inextensible with very few iterations.

To generalize this idea to rigid bodies, we replace the particle
chain by a chain of jointed rigid bodies which is attached at one
end to a kinematic object. As Figure 2 shows, the particles are
now replaced by joint locations (red dots) on the bodies and the

LRA edges by the connections between joint locations within one
body (blue segments). We assume that the joints have no positional
degrees of freedom, which is true for the two most important joint
types, namely hinge and spherical joints. Since the yellow body at
the top is kinematic and its joint location �xed, we can create upper
distance constraints from all joints directly to the attachment point
(red lines).

Figure 2(a) shows a chain in its rest con�guration. When released
under gravity, it stretches and reaches the equilibrium con�guration
shown in 2(b). It is easy to see that the joints (red dots) need to stay
within the dotted circles at all times. This results in uni-lateral long
range constraints. Handling unilateral constraints in Gauss-Seidel
or Jacobi solvers is straightforward. In each iteration of our iterative
solver, we project only the joints that are outside their respective
spheres on to the closest point on the sphere.

We generalize the LRA and also take angular joint limits into
account – angle limits for hinge joints and swing limits for spherical
joints. In addition to tighter upper bounds, this also yields lower
distance bounds, a concept that is not discussed in [Kim et al. 2012].
Figure 2(c) shows the chain with 90 degree joint limits. Now, the
chain cannot be fully stretched restricting the joints to remain
in smaller spheres. Instead of summing up the edge lengths to
compute the distance bounds, we have to take the maximal opening
angles into consideration as shown in Figure 2(d). These angle
bounds are the sum of the angle γ between the segments in the rest
con�guration (Figure 2(a)) and the upper angular joint limit δ .

The chain shown in Figure 2(e) shows a con�guration, in which
both upper and lower distance bounds can be derived. Here, the rest
anglesγ are 180 degrees. In this case, the upper joint limits δ restrict
the overall bending. The chain is only allowed to be between the
con�gurations (e) and (f). This fact restricts the joints to remain
inside the gray bands.

Figure 3 shows how we derive lower and upper distance bounds
to the attachment points while taking angular joint limits into
account. We describe how the lower bound distance di+1 from joint
i + 1 to the attachment point is computed based on the bound di
for joint i and the segment length li between the joints. For a lower
bound, we have to make di+1 as small as possible. In addition to di
and li , we also need αi (light blue), the angle of the last segment
w.r.t. the direct line to the attachment point. To make di as small
as possible we have to turn li as much as possible towards the
attachment point. We are allowed to rotate it at most by the angle
γi + δi , as described in Figure 2. The minimum angle between di
and li is therefore max(αi − γi − δi , 0) (dark blue). Knowing this
angle allows us to computedi+1. The next angle αi+1 turns out to be
αi+1 = max(αi −γi −δi , 0)+β , where β is the angle between di and
di+1. The same method can also be used to compute an upper bound
distance. Now we try to bend li as much as possible away from
the attachment which is achieved by the angle min(αi + γi + δi ,π ).
Note that this algorithm not only works for simple chains but for
branching structures as well.

3.2 Free chains
There are many use cases in which chains or cables are not attached
to static or kinematic objects. An example is the track of a tank or
an excavator depicted in Figure 4(a). So far we have asymmetrically
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Figure 2: Chains of rigid bodies (gray) attached to a kinematic object (yellow) and connected via joints (red dots). (a): The chain
in the rest con�guration. (b): Released under gravity without joint limits. Upper distance bounds can be computed from each
joint directly to the attachment location. (c): Taking 90 degree upper angular joint limits into account yields tighter bounds.
(d): The maximal opening angle between segments (blue) is the sum of the rest angle γ and the joint angle limit δ . (e): A chain
with a stretched rest con�guration. (f): With angle limits δ , both lower and upper distance constraints can be derived.
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Figure 3: Computation of the lower distance bound di+1
from joint i + 1 to the attachment point given the lower dis-
tance bound di of joint i and the segment length li . In addi-
tion to the previous distance di , the angle αi of the last seg-
ment w.r.t. the attachment point is needed to �nd the new
bound.

moved the joints towards the attachment point to satisfy the upper
and lower distance bounds. This is not possible for free chains.
There are also other situations in which LRA constraints are not
e�ective, even with a �xed attachment point as shown in Figure 4(b).
Here we drew the upper bound constraint for the last joint. Keeping
joint within this sphere does not prevent stretching of the second
part of the chain.

To solve both problems we derive long range constraints hier-
archically from the local joints in such cases as shown in Figure 5.
Level 0 constraints are the local segments connecting all pairs of
joints within a given body shown in blue. We denote as d0

i, j the
local segment between joint i and joint j on a given body. Layer
0 and the segments in blue are shown in the top row of Figure 5.

(𝑎) (𝑏)

Figure 4: Scenarios in which long range attachments are not
applicable (a) or not e�ective (b).

We do not generate constraints on this level because the segments
connect joints adjacent to the same body and therefore keep their
lengths automatically. To create level n + 1 constraints based on
level n constraints we proceed as follows. For each joint j we create
one level n + 1 constraint for all pairs of level n constraints that
are adjacent to this joint. In the �rst case of Figure 5, two level 0
constraints are adjacent to joint j, and therefore, one level 1 con-
straint is created at joint j by combining the two segments. In the
simple case of a linear chain, at most one level n + 1 constraint is
created at each joint because there can be at most two adjacent level
n constraints as shown in the second row of Figure 5. However, our
method also works for general graphs as depicted in the third row.

Our method yields the hierarchy shown in the top two rows of
Figure 6 for linear chains. It contains O(n logn) constraints. An-
other option would be to create higher-level constraints only for
increasingly smaller subsets of the joints in a multigrid fashion as
shown in the bottom two rows of Figure 6 yieldingO(n) constraints.
The reason we use the dense hierarchy is that the sparse variant
yields visual artifacts because not all joints are solved to the same
accuracy with a �xed number of solver iterations. For instance, if
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Figure 5: Construction of a hierarchy of long range distance
constraints. Top: Layer 0 contains segments between joints
adjacent to the same body (blue). For each pair of level n
constraints adjacent to the same joint, one new level n + 1
constraint is generated by combining the two. Middle: The
procedure applied to a linear chain. Bottom: The procedure
also works for arbitrary graphs.

Figure 6: First and second row: The resulting hierarchy on a
linear chain. O(n logn) long range constraints are generated.
Third and fourth row: Reducing the joint set in higher levels
produces O(n) constraints but can yield visual artifacts.

the chain is picked up at a joint which is present in a higher level,
it behaves di�erently than if picked joint only existed in the �rst
layer. The higher number of constraints is not problematic in our
examples because we only use a �xed number of layers, typically
less than �ve.

The remaining question is how to combine two long range con-
straints. The procedure to do this is illustrated in Figure 7 and is
similar to the incremental algorithm for long range attachments
shown in Figure 3. As in the incremental case, we need to store the
angles α1 and α2 of the end segments w.r.t. the distance constraint.
Figure 7 shows how a lower bound constraint is constructed. Here,
dl and dr denote the lower bound distances for the left and right
constraints. At the center joint, the smallest angle between the
adjacent segments is the rest angle γ minus the joint limit δ or

𝛼1
𝑟

𝛾 − 𝛿

𝑑𝑙
𝑑𝑟

𝑑

𝛼1 𝛼2

𝛼2
𝑟

𝛼2
𝑙

𝑑
𝛼1 𝛼2

𝛼2
𝑙

Figure 7: Computation of the lower distance bound d given
the lower distance bounds dl and dr of the two constraints
that are combined. Top:As in the attachment case, the angles
α1 and α2 between the outermost segments w.r.t. direction
of the distance bound have to be stored. Bottom: The angle
limit on the center joint limits the angle between the adja-
cent segments. The knowledge of the extremal center angle
and the boundary angles and distance bounds of the adja-
cent constraints allows the computation of all other quanti-
ties.

zero if the di�erence is smaller than zero as in the incremental
case. Knowing this angle, dl and dr , we can compute the combined
bound d . With all three distances of the red triangle, we can then
compute the upper left and right angles of the triangle and the end
angles α1 and α2 of the combined joint. For upper bounds, we make
the angle between the center segments as large as possible.

3.3 Soft constraints
So far we have considered hard limits only. A constraint that pre-
vents a structure from overstretching must be hard. There are other
cases, however, in which softening the constraints creates new
useful e�ects. For instance, applying softened lower bounds from
bending limits creates bending resistance. In Figure 16 we used the
length of the upper bound constraint as a soft lower bound with the
e�ect that the bow is forced to be fully stretched and �res the arrow.
Here the computation of the upper bound yields the information
necessary to simulate the cross bow although the artist modeled it
in a taut state.

3.4 Hinge chains
For a further type of long range constraint, we consider a special
type of chain, namely a sequence of bodies connected by hinge
joints with parallel axes as depicted in Figure 8. Examples for such
chains are the tracks of tanks and excavators, bicycle chain, or
parts of robot arms. In this case, all joints are restricted to remain
in a common plane which is a long range positional constraint.
In addition, all joint axes need to be parallel which yields a long
range rotational constraint. If one end of the chain is attached
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Figure 8: If a chain is linked by hinge joints with parallel
axes, all joints must lie in a common plane (blue line) and
all axes must be parallel at all times which are long range
constraints. Due to the principle of least action, this plane
best �ts the joint locations in a mass weighted least squares
sense.

kinematically, the plane is �xed in space and all the joints can
simply be projected into this particular plane. If the chain is free,
however, the plane itself is free to move and we have to �nd it at
every time step as the plane for which the projection step does
not introduce linear or angular momentum. Due to the principle of
least action, the plane we are looking for is the plane that is closest
to the joint locations in a mass-weighted sense or in other words,
the plane for which the projection step performs the least amount
of work.

We derive it using the method of orthogonal multivariate regres-
sion and �rst compute the mass weighted co-variance matrix

A =
∑
i
(xi − x)(xi − x)T mi , (1)

using the center of mass x =
∑
i ximi . The xi are the joint loca-

tions – two per body – and mi the masses of the corresponding
bodies. The closest plane’s normal is parallel to the Eigenvector of
A that corresponds to the smallest Eigenvalue and the plane itself
passes through the center of mass. All joints are then projected into
this plane and all joint axes are aligned with the plane normal by
applying the necessary positional corrections.

ℎ

ℎ

ℎ

Figure 9: If the joint locations are not in a plane in the rest
con�guration, we �nd the best �t planewhose normal is par-
allel to the hinge axes and store the individual o�sets h. At
run time, we �t the plane to the o�set joint locations.

Projecting the joints into the common plane is only correct if all
joints are in a plane in the rest con�guration. A chain in which this

is not the case is shown in Figure 9. Again, if this case is not handled
in the physically correct way, the chain immediately starts to rotate
and �ies to in�nity as was the case for us until we found the correct
solution which works as follows: As a pre-computation step, we
determine the plane perpendicular to the joint axes and through
the center of mass of the joint locations in the rest con�guration.
Here the mass of a joint corresponds to the sum of the masses of the
adjacent bodies. We also pre-compute the distances h of the joints
to this plane. At run time, we displace the joint locations along
the current joint axes by the distance h resulting in the white dots
in Figure 9. We then �t the plane through these displaced points.
Finally, it is important to apply the positional corrections to the
bodies at the displaced locations.

3.5 Generalized shape matching

(𝑎)

(𝑏)

(𝑐) (𝑑)

Figure 10: (a) A set of rigid bodies that are connected via
�xed joints that fully restrict the relative orientation of two
neighboring bodies. (b) A conforming rest state satisfying all
joint restrictions. (c) The current poses of the bodies. (d) The
shape match constraint matches the conforming rest state
into the current state.

If a set of rigid bodies is connected via a graph of �xed joints
that fully restrict the relative orientation of two bodies, the entire
set is only allowed to move as a rigid union. Figure 17 (left) shows a
vase that is pre-fractured into pieces. These pieces are held together
with �xed joints. With 10 solver iterations the vase behaves like
a soft body. With 100 iterations, it becomes sti�er but still looks
deformable.

To make a rigid union completely sti� we propose a shape match-
ing constraint which is a generalization of the shape matching
constraint proposed in [Müller et al. 2005] for point particles. The
basic idea is to match the current con�guration of the bodies with
a con�guration that satis�es all �xed joint constraints. A simpler
way to make a rigid union completely sti� would be to simulate
it as one rigid body. However, working with a shape matching
constraint allows us to simulate fracture. To do this we run the
solver for a number of iterations on the individual bodies and joints.
During this phase, if a joint force exceeds a threshold, we delete
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the corresponding joint. After joint deletion, we re-compute the
rigid unions by �ooding the joint graph. Finally we apply the shape
match constraint to the rigid unions.

Figure 10 illustrates this process in more detail. Figure 10(a)
shows a set of rigid bodies in their rest state. As a �rst step we
�ood the graph de�ned by the bodies and all �xed joints. Each
island becomes a shape matching constraint. If the bodies do not
satisfy the �xed joint constraints in the rest state, we �rst have to
compute a conforming rest state as shown in Figure 10(b). If the
joints are consistent, such a con�guration exists and is unique up
to a rigid motion of the entire group. We are free to choose any
such motion because it will be cancelled out in the shape matching
process. During the simulation after an unconstrained integration
of the individual bodies, the �xed joint constraints are violated
as Figure 10(c) shows. To solve all constraints in one step in a
momentum conserving way we match the conforming rest state
with the current state and use the matched poses for the rigid bodies
shown in Figure 10(d).

To �nd the momentum conserving transformation, the original
shape matching method for point masses proceeds as follows: For
a set of particles with current positions pi , rest positions p̄i and
massesmi �rst compute the center of mass p of the current positions
and the center of mass p̄ of the rest positions. Next compute the
moment matrix A =

∑
imi ri r̄Ti , where ri = pi − p and r̄i = p̄i − p̄.

The optimal transformation of the rest positions into the current
positions is then given by the translation p − p̄ and the rotational
part of A given by the polar decomposition.

We now have to replace the point masses by rigid bodies. For the
translational part we can simply replace the bodies by point masses
at their individual center of mass and use the conforming rest state
instead of the original rest state. The computation of the moment
matrix A becomes slightly more involved. For an individual rigid
body i whose current rotation from the conforming rest state to the
current state is given by the matrix Ri , the moment matrix becomes

Ai = ρ

∫
V
rr̄TdV = ρ

∫
V
Ri r̄r̄TdV = Riρ

∫
V
r̄r̄TdV = Ri Āi , (2)

where ρ is the body’s density, V its volume, r the distance to its
center of mass and Āi = ρ

∫
V r̄r̄TdV is the co-variance matrix of the

body in the conforming rest state which can be pre-computed. In
[2004] Blow describes an elegant way to compute this quantity for
any 3D solid body represented by a triangle mesh. Āi is computed
relative to the center of mass of the body. The moment matrix
relative to the center of the rigid union can be computed using the
parallel axis theorem as A′i = Ai +mi ri r̄Ti , where ri is the distance
of the center of mass of the rigid body to the center of the rigid
union. This yields the �nal formula

A =
∑
i
Ri Āi +mi ri r̄Ti . (3)

If Āi was pre-computed in the original rest state, it needs to be
transformed into the conforming rest state as Qi Āi QT

i , where Qi
is the rotation from the original into the conforming rest state.

3.6 Contact graphs
In the same way we de�ned a joint graph, we can also de�ne a
contact graph with contacts as nodes. Two nodes are connected if

Figure 11: Supporting contacts. Top: A contact is supporting
if its projection along gravity (red arrow) lies inside the con-
vex hull (red bar) of the projections of the adjacent support-
ing contacts below it. Middle: The top contact is outside the
convex hull and can therefore not support a load. Bottom:
The top contact passes the convex hull test but is not sup-
porting because the adjacent contacts are not static.

Figure 12: Top: Supporting (red) and non-supporting con-
tacts (blue) in a more complex scenario. Bottom: If the pro-
jection of the center of mass of an object lies inside the con-
vex hull of the projections of all adjacent supporting con-
tacts below it, it is supported (red).

the corresponding contacts act on the same body (see the top of
Figure 12). The contact graph lets us derive long range constraints
to speed up and stabilize rigid body stacks. Stable stacking is a
challenging problem in rigid body simulations. As mentioned in
the introduction, our constraints are based on physical principles,
in contrast to less physical stabilization methods such as shock
propagation.

In the previous sections we have considered joints with no po-
sitional degrees of freedom. These counteract any mutual motion
of the joint locations. Also, angular limits for joints are typically
de�ned explicitly. Therefore, the derivation of upper and lower
distance constraints from joint graphs is relatively simple. In con-
trast, contacts only prevent motion against the negative contact
normal in case of dynamic friction or against any non-separating
motion if the contact satis�es the static friction criterion |ft | < µ fn ,
where fn is the component of the contact force along the negative
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contact normal, ft the tangential part of the contact force and µ the
coe�cient of friction. To derive the angular limits, the geometry
of the objects near the contacts has to be analyzed. This is a com-
plex task for arbitrarily shaped objects and requires the knowledge
of the geometry of the bodies in the solver. To derive all possible
distance constraints, the rigidity structure of the graph is needed
as well. However, despite the existence of considerable mathemati-
cal theory, a general method to analyze the rigidity of a structure
mathematically has not been found so far.

Therefore, we consider a special yet important case, namely a
stack of rigid bodies on �xed ground under gravity as depicted in
in Figure 11. Because we only consider static contacts, neither the
ground nor the contacts normals need to be aligned with gravity
for our method to work. Whether a contact is dynamic or static
is determined by running the solver a �xed number of iterations
before the contacts are analyzed.

Our goal is to identify supporting contacts based on the contact
graph. We call contacts supporting if they prevent motion against
gravity. A supporting contact can be interpreted as a direct, long
range lower distance bound from the contact to the ground. Static
contacts with the ground are supporting because the ground is �xed
and the contacts prevent tangential motion. To determine the state
of all other contacts, we process them from bottom to top against
gravity and test the criterion depicted in Figure 11. For a given
contact we determine all adjacent contacts that are marked as be-
ing supporting. Due to the processing order, they are all below the
current contact. We then compute the 2d convex hull of their projec-
tions onto the plane perpendicular to gravity – typically the ground
plane (the red bar). If the projection of the contact in question lies
within this convex hull, it is supported by the adjacent contacts
(top case). Otherwise it is not able to support a load (middle case).
The convex hull test is a crucial di�erence between our method
and shock propagation. If objects are frozen bottom to top without
taking their horizontal relationship into account the three leftmost
boxes in the �rst scene of Figure 12 remain still, which is wrong. It
is important to note that dynamic (sliding) contacts cannot support
other contacts (bottom case). The top image of Figure 12 shows a
more complex situation with supporting (red) and non-supporting
(blue) contacts.

Once we know which contacts are supporting, we can determine
whether entire bodies are supported by their adjacent supporting
contacts (see bottom image of Figure 12). This is the case if the
projection of the center of mass of a body lies inside the convex
hull of the projections of the adjacent supporting contacts below
it (red bodies). To compute the 2d convex hulls we use Andrew’s
monotone chain method [Andrew 1979] which is a fast, simple and
elegant 2d hull algorithm.

4 RESULTS
Since all our constraints are position based, they are most naturally
integrated into a position based rigid body engine. This is why
we used our own implementation of a position based rigid body
solver based on XPBD. However, position based constraints can
also be handled by impulse based solvers that support joint limits
or included in the manifold projection step that most impulse based
solvers perform to prevent drift.

Figure 13: A circular hinge chain composed of 132 segments
with joint o�sets. First: The long range position and rota-
tion constraints keep it planar and all joints parallel with
only 5 iterations. Second: Long range rotation constraints
are turned o�. Third: Long range position constraints are
also turned o�. Fourth: Iteration count is increased to 100.

Figure 14: Weights attached to the ceiling via a chain. Left:
10 iterations and long range attachments keep the weights
o� the ground. Center: 10 iterations regular iterations yield
substantial stretch. Right: even with 1000 iterations, the bot-
tom weight stays on the ground.

We measured speed-ups not in terms of computation time, but
in terms of comparing the number of solver iterations needed to
create the same result with and without long range constraints. Of
course, there is a computational overhead in solving the long dis-
tance constraints. However, since projecting a distance constraint is
cheaper than solving a single joint with joint limits and since their
number are of the same order, the cost of performing 10 iterations
with long range constraints is typically smaller than the cost of 20
simple iterations but more e�ective than performing 100 or 1000
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Figure 15: A rope bridge containing of 1132 joints arranged
in a general graph. Left: regular simulation with 20 itera-
tions. Right: using a hierarchy of 3 levelswith the samenum-
ber of solver iterations.

Figure 16: Applying the upper bound distance of the bow as
a soft lower bound constraint stretches the bow and �res the
arrow.

regular iterations. The plane and shape match constraints are even
cheaper. Summing up the moment matrices is fast and Eigenvalue
decomposition and polar decompositions have to be performed on
3 x 3 matrices only, independent of the constraint size.

To demonstrate the e�ect of long range attachment constraints
we attached heavy weights connected by a chain to the ceiling as
shown in Figure 14. The mass ratio between a chain segment and
the heaviest weight is 1:10,000 which is di�cult to handle with
traditional solvers. The leftmost image shows that with long range
constraints and 10 iterations, the chain keeps its length. The second
image shows the same scene simulated with the same number of
solver iterations but without long range constraints. Even with
1000 iterations, the heaviest weight stays on the �oor, as shown in
the third image.

The cable car scene shown on the right of Figure 1 is a case in
which long range attachments are not applicable because the cable
is not �xed at the top. Here we use a hierarchy of constraints to
get a cable which is strong enough to pull one of the cars up by the
weight of the other two. The mass ratio between the chain elements
and the car is again on the order of 1:10,000.

Figure 13 shows a bicycle chain with 132 segments. We o�set
part of the chain by inserting taller segments to demonstrate the
more general case. For the �rst image we used 5 solver iterations. In
each iteration we solve all joints and perform one global projection

Figure 17: From top left to bottom right: a pre-split vase
whose pieces are held together by �xed joints. The vase is
dropped and hits the �oor at an angle.With 10 iterations the
vase behaves like a soft body. Increasing the iteration count
to 100 increases the sti�ness. With 10 iterations and shape
matching, it becomes completely sti�. A mixed simulation
yields force information for fracture simulation.

Figure 18: Destruction of a tower of 1000 rigid bodies. The
red bodies are identi�ed as being supported and are kept in
position via a long range constraint to the ground.
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step. In this example, projection takes about 10 percent of the time
of joint projection. The second image shows what happens when
long range rotational constraints are turned o�. While the chain
stays planar, the orientations are still propagated via short range
constraints and do not align after 5 iterations. What happens when
long range attachments are fully turned o� and the iteration count
is kept at 5 is shown in the third image. Now the chain becomes
completely �oppy. Increasing the iteration count to 100 as in the
fourth image improves the behavior but the result is still far from
correct.

To demonstrate how our method works with general networks
of joints we simulated the rope bridge shown in Figure 15 which
contains 1132 joints. With 20 regular solver iterations, it sags to
the ground as the image on the left shows. Using a hierarchy of 3
levels yields the result on the right.

Figure 16 shows the simulation of a crossbow. Here we used the
upper bounds as soft upper bounds with the e�ect that the bow
stretches and �res the arrow even though it is modeled in a bent
state.

We used generalized shape matching constraints to simulate the
scenes shown in Figure 17. Using 10 iterations on the �xed joints
yields a soft body instead of a brittle vase. Increasing the number
of iterations to 100 improves the behavior but still does not yield
the desired behavior. With a shape matching constraint and using
only 10 iterations, the vase becomes perfectly rigid.

Finally for the destruction of the tower of 1000 bodies shown
in Figure 18, we used the contact graph to identify supporting
contacts and bodies (show in red). These are �xed in space which
corresponds to having a long range constraint all the way to the
ground.

5 CONCLUSION AND FUTUREWORK
We have presented the idea of long range constraints for rigid
body simulations, in particular lower and upper distance bounds
derived from joint graphs, plane projection and angular constraints
for hinge chains and supporting contacts derived from contact
graphs. Many other long range constraint types are conceivable,
which opens a variety of possible future work. For instance, as
mentioned, more constraints can be derived from the contact graph
by considering more general cases. Moreover, the joint and contact
graphs can be combined by connecting joints and contacts that act
on the same body. This uni�ed graph could allow the extraction of
new types of long range constraints.

Typically, modi�cations to joint graph are rare and so the addi-
tional cost of deriving long range constraints is negligible. However,
identifying supporting contacts can be expensive for large scenes.
In our prototype, we perform a full analysis at every time step.
However, this cost could be signi�cantly reduced with the sup-
port of persistent contacts that allow for performing the analysis
incrementally.
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