
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020
J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

Detailed Rigid Body Simulation
with Extended Position Based Dynamics

Matthias Müller1 Miles Macklin1,2 Nuttapong Chentanez1 Stefan Jeschke1 Tae-Yong Kim1

1NVIDIA 2University of Copenhagen

Figure 1: Our method allows the stable simulation of a rolling ball sculpture with fast moving marbles and collisions against curved geometry
as well as a remote controlled car racing over obstacles with deformable tires.

Abstract
We present a rigid body simulation method that can resolve small temporal and spatial details by using a quasi explicit integra-
tion scheme that is unconditionally stable. Traditional rigid body simulators linearize constraints because they operate on the
velocity level or solve the equations of motion implicitly thereby freezing the constraint directions for multiple iterations. Our
method always works with the most recent constraint directions. This allows us to trace high speed motion of objects colliding
against curved geometry, to reduce the number of constraints, to increase the robustness of the simulation, and to simplify the
formulation of the solver. In this paper we provide all the details to implement a fully fledged rigid body solver that handles
contacts, a variety of joint types and the interaction with soft objects.

CCS Concepts
• Computing methodologies → Simulation by animation; Interactive simulation;

Keywords: Rigid body simulation, soft body simulation, position based dynamics

1. Introduction

Rigid body simulation lays at the heart of every game engine and
plays a major role in computer generated special effects in movies.
The central aspects of a rigid body simulation are contact and
joint handling. Two popular approaches exist for collision handling,
namely penalty methods and impulse based methods. Penalty meth-
ods use forces caused by penetrating bodies for separation. These

methods are rarely used in games and films because large forces
and small time steps are needed to make colliding bodies look rigid.
Recently, penalty methods have gained popularity in connection
with differentiable simulations because they generate smooth tra-
jectories.

The most popular approach is to use impulses, however. Mir-
tich and Canny [MC95] laid the foundation for impulse based

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

𝛻𝐶2
𝛻𝐶1

𝑙2𝑙1

𝑙2𝑙1

𝐩1 𝐩2

𝐩2𝐩1

𝐩3

𝐩3

Figure 2: Non-linear Gauss-Seidel: Points ?1 and ?2 are fixed to
the ground. The distances from the top point ?3 to ?1 and ?2 are
constrained to be ;1 and ;2 respectively. Finding a position for ?3
which satisfies both constraints is a non-linear positional problem.
By working with velocities or by solving it globally the constraint
gradients get fixed. In these cases the red point above the true so-
lution is found no matter how many iterations are applied. To find
the true solution, multiple linear solves have to be performed. A
non-linear Gauss-Seidel solver works on the non-linear positional
problem directly. It updates the gradients after each individual con-
straint projection and converges to the true solution without the
danger of overshooting.

rigid bodies simulation in graphics and games in the mid nineties.
Hecker [Hec97] introduced the concepts to game developers and
Baraff [Bar97] to the computer graphics community. Here, the ve-
locities are changed immediately at impacts by applying impulses
instead of applying accelerations caused by forces. Conceptually,
these methods work on the velocities directly omitting the acceler-
ation layer.

Simulating objects with dynamically changing positions and ori-
entations is a non-linear problem. However, freezing a spatial con-
figuration and solving for velocities results in a linear system of
equations. Contacts yield inequality constraints so in general, a lin-
ear complementarity problem (LCP) has to be solved which is –
as the name indicates – still linear. The space of velocities can be
viewed as the tangent space to the non-linear space of spatial states
at the current configuration. Working within the linear space of ve-
locities is therefore more convenient than working with positions
and orientations directly. However, one of the main drawbacks of
this approach is the problem of drift because a velocity solver does
not see positional errors. Existing engines solve this problems with
a variety of methods such as introducing additional forces or con-
straints.

Position based dynamics (PBD) [MHR06, Sta09] solves this
problem by working with positions directly. Velocities are derived
after the solve as the difference between the configuration at the
end and the beginning of the time step.

PBD has mostly been used for the simulation of constrained par-
ticle systems to simulate cloth and soft bodies until Macklin et
al. [MM13] devised a way to handle fluids as well. This allowed the
development of a particle based unified solver in the position based
framework [MMCK14] by the same group. They used the idea of
shape matching [MHTG05] to simulate rigid bodies as a collection
of rigidly connected particles. However, the cost of shape matching
grows with the number of particles, impulse propagation is slow
and handling joints difficult. A more effective way is to extend
PBD beyond particles and simulate rigid bodies as single entities
by introducing rotational states. Deul et al. [DCB14] formulated
this type of rigid body dynamics in the positional framework of
PBD.

Working with velocities or linearizing the positional problem for
an iteration of a global solver both have one aspect in common:
they freeze the constraint directions for the time of the linear solve,
i.e. over several iterations [MEM∗19, ST96, KSJP08]. In this case,
contacts have to be treated as local planes and coulomb friction
cones as polyhedra. Also, constraints in three dimensions such as
an attachment yield three constraint equations. In contrast, algo-
rithms based on solving local contact problems with methods such
as Gauss-Seidel allow contact geometry to change at each itera-
tion. This approach has been used to model smooth isotropic fric-
tion [Erl17, DBDB11]. We extend this approach to also allow con-
tact normal geometry to change each iteration.

The original PBD approach uses the non-linear projected Gauss-
Seidel (NPGS) method to solve the non-linear positional equations.
NPGS is fundamentally different from applying the regular or pro-
jected Gauss-Seidel (PGS) method to the linearized equations. Fig-
ure 2 visualizes this difference. The key is that after each individual
constraint solve, the positions are immediately updated. In this way,
PBD works on the non-linear problem directly, increasing both ro-
bustness and accuracy. Round friction cones or collisions against
curved objects are easy to handle. Instead of storing contacts as ref-
erences to a pair of objects together with a static normal which re-
sults to a contact plane, we only store the references and recompute
the normal before every individual solve of the specific contact. A
less expensive way would be to store the local contact geometry as
in the traditional approach but using a higher-order approximation.

Due to these advantages, our goal was to extend PBD in a way
that allows the implementation of a fully fledged rigid body engine
but without sacrificing its simplicity. We will provide all the algo-
rithms on a level that allows an immediate implementation.

However, PBD has had the reputation of being non-physical and
too much of a simplification based on the following concerns:

• It does not use physical quantities and units
• The stiffness is iteration and time step dependent
• The integration is not physically accurate
• It is dependent on the order of constraint handling
• It depends on mesh tessellation
• It converges slowly

Fortunately, all these concerns have been addressed recently with
the result that our proposed solver is a serious competitor to other
methods as we will show in the results section.

The first three concerns have been addressed in [MMC16]. Ex-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

tended PBD (XPBD) adds a small extension to the original ap-
proach which makes stiffness independent of the iteration count
and time step size with physical units and allows measuring forces
and torques. The authors also show that XPBD is a close approxi-
mation of implicit Euler integration. An important feature of XPBD
is that compliance is used which is the inverse of stiffness. This
means we can easily handle infinitely stiff constraints in a robust
way by setting the compliance to zero. In this case XPBD falls
back to PBD.

The solution returned from Gauss-Seidel methods is in general
dependent on the ordering of the constraint solve. There are sit-
uations in which this order dependence is valuable, for instance
to control error propagation. However, the dependence can be re-
moved by using Jacobi, or symmetric successive over relaxation
(SSOR) iterations. PBD can also handle constraints that are based
on continuum mechanics with common finite element (FEM) con-
stitutive models [MMC16]. This alleviates the problem of mesh de-
pendent stiffness present in more ad-hoc energy models.

Finally, the concern regarding slow convergence was addressed
most recently in [MSL∗19]. By replacing solver iterations with
substeps, Gauss-Seidel and Jacobi methods become competitors of
global solvers in terms of convergence. Substepping in combina-
tion with one NPGS iteration per substep yields a method that looks
computationally almost identical to an explicit integration step, but
with the advantage of being unconditionally stable due to the usage
of compliance. We call it a quasi-explicit method.

The findings described in [MSL∗19] about substepping are sur-
prising and somewhat unintuitive. Substepping is not just the reduc-
tion of the time step size. The important concept is the simulation
time budget per frame which is typically constant in real-time appli-
cations and given by the number of sub-steps times the number of
solver iterations per substep. One extreme choice is to only use one
substep and spend all the time budget with solving the equations
to high accuracy. The other extreme is to use as many substeps as
possible and only use a single iteration to solve the equations ap-
proximately. The surprising fact which we will demonstrate in this
paper as well is that the best choice in terms of accuracy of the
simulation is to choose the maximum number of substeps with one
iteration each. Substepping is not only optimal for accuracy, it also
reveals high frequency temporal detail that is missed when using
large time steps. Substepping also improves energy conservation
significantly and reduces the chances of missing collisions via tun-
neling.

Since using one iteration is the best choice in terms of accuracy,
the number of substeps can be derived from the time budget and
since we use XPBD which allows the use of true physical quanti-
ties, there is no need to tune any parameters. Due to the uncondi-
tional stability of XPBD, there is no need to tune the time step sizes
for stability reasons either.

2. Related Work

Rigid body simulation has a long history in computer graphics. For
a comprehensive overview of the field we refer the reader to the
recent survey by Bender et al. [BET14]. It covers most of the im-
portant work in this field published since the state of the art report

of Baraff [Bar93]. We have already mentioned most of the specific
work that is closely related to our method in the introduction. Here
we add a few more approaches to that list.

Our method focuses on the handling of varying contact normals.
To handle time-varying contact areas, Xu et al. [XZB14] proposed
a simulation method based on semi-implicit integration. They use
analytic contact gradients in connection with a penalty formulation.
The stability is increased by using symbolic Gaussian elimination.
To increase the fidelity of contact handling, Wang et al. [WSPJ17]
precompute spatially and directionally varying restitution coeffi-
cients by treating a body as a stiff deformable object and solve
a proxy contact problem. Using this data results in more realistic
bouncing behavior during simulation.

Implicit position-based time discretizations and constraints have
been used in the computer-aided design (CAD) and multibody dy-
namics software, such as ADAMS and MBDyn [OCC77, Rya90,
MMM14]. They most often use penalty models of contact that re-
quire carefully tuned parameters, and do not allow for perfectly
hard contact response. Offline multibody dynamics software may
also use higher-order integration schemes such as second order
implicit Euler (BDF2) that increase the accuracy of the simula-
tion of objects in free flight. However, for non-smooth trajectories,
typical situation in rigid body simulations with contact, we found
higher-order integration may yield spurious and unpredictable col-
lision response. This motivates our use of small time-steps and
complementarity-based contact models.

One of the advantages of our method is the natural handling
of coupled simulations with rigid and soft bodies. Galvez et
al. [GCC∗] simulate the non-smooth dynamics of systems with
rigid and deformable bodies by linking them with kinematic joints.
The resulting contact problem is formulated using a mixed aug-
mented Lagrangian method. The equations of motion are integrated
with a non-smooth generalized-U time integration scheme.

To handle rigid bodies, we augment the particles with orienta-
tion information. Müller et al. [MC11] used this idea to stabilize
the simulation of soft objects via shape matching. Later Umetani
et at. [USS15] leveraged the same idea to simulate position based
elastic rods.

The most closely related method to our approach is the work of
Deul et al. [DCB14]. They developed a formulation of rigid body
dynamics in the positional framework of PBD. Their ideas are for-
mulated somewhat vaguely, however. An example is the short para-
graph about joints which only discusses one joint type and does not
address joint limits – a central feature of rigid body engines. In the
results section we will present various examples which rely on the
handling of hard and soft joint limits. We also describe collision
against rounded objects. A central difference is the use of XPBD
instead of PBD which not only allows the use of physical param-
eters but also allows the derivation of forces and torques at joints
and contacts.

3. Position Based Rigid Body Simulation

We first recap the original position based simulation algorithm for
constrained particle systems.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

𝑚1 𝑚2 𝑚1 𝑚2

𝑚1, I1
𝑚2, I2 𝑚1, I1 𝑚2, I2

∆𝐱

∆𝐱

∆𝐱1 ∆𝐱2

∆𝐱1 ∆𝐱2

∆𝐪1 ∆𝐪2

𝐫1
𝐫2

I1 I2

∆𝐪1 ∆𝐪2

∆𝐪

I1
I2

Figure 3: The basic correction operations. Top: traditional particle based PBD. A positional correction vector Δx is applied to a pair of
particles. This correction is distributed among both particles proportional to their inverse mass to conserve linear and angular momentum.
Middle: applying a positional correction to points r1 and r2 on a pair of rigid bodies results in a pair of positional corrections Δx1 and Δx2
applied to the centers of mass as well as a pair of rotational corrections Δq1 and Δq2 proportional to a combination of their inverse masses
and inverse moments of inertia. Bottom: a rotational correction Δq is applied to two bodies – in this case to align their orientations. The
rotational correction is distributed among the two bodies proportional to their inverse moments of inertia while the centers of mass are not
affected.

3.1. Particle Simulation Loop

Algorithm 1 Position Based Particle Simulation

while simulating do
CollectCollisionPairs();
ℎ← ΔC/numSubsteps;
for numSubsteps do

for = particles do
xprev← x;
v← v+ ℎ fext/<;
x← x+ ℎv;

end
for numPosIters do

SolvePositions(x1, . . .x=);
end
for = particles do

v← (x−xprev)/ℎ;
end

end
end

Algorithm 1 shows the simulation loop. Here we already in-
cluded the idea of substepping for which ΔC is the time step size
and ℎ the substep size. During the first loop of each substep, the
particle’s positions x8 and velocities v8 are explicitly integrated
taking only the external forces fext such as gravity into account.
The second loop implements the core implicit solver. The proce-
dure "SolvePositions" iterates through all constraints (either Gauss-

Seidel or Jacobi style) and moves the positions of the particles us-
ing constraint projection. Discussing this part will be our main fo-
cus. In the third loop the new velocities are derived from the previ-
ous and current positions. Macklin et al. [MSL∗19] showed that it
is significantly more effective to take substeps than solver iterations
so "numPosIters" is typically set to 1.

3.2. Rigid Body Simulation Loop

In contrast to a particle which is described by its position x, its
velocity v and its mass < alone, the state of a rigid body of finite
size also contains the corresponding angular quantities. These are

• its orientation which can be described by a unit quaternion q ∈
R4, |q| = 1,

• its angular velocity l ∈ R3 and
• its inertia tensor I ∈ R3G3.

The angular velocity vector can be split into the unit axis of ro-
tation and the scalar angular velocity as

8 = l ·nrot. (1)

The inertia tensor I is the quantity that corresponds to the mass in
rotational terms. For basic shapes like boxes and spheres it is given
by simple formulas. Blow and Binstock [BB04] devised an elegant
and short algorithm for the general case of a body that is described
by a closed triangle mesh, which simultaneously computes the cen-
ter of mass. Algorithm 2 shows the extended version of Algorithm 1
which take these additional quantities into account.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

Algorithm 2 Position Based Rigid Body Simulation

while simulating do
CollectCollisionPairs();
ℎ← ΔC/numSubsteps;
for numSubsteps do

for = bodies and particles do
xprev← x;
v← v+ ℎ fext/<;
x← x+ ℎv;

qprev← q;
l← l+ ℎ I−1 (gext − (l× (Il)));
q← q+ ℎ 1

2 [lG ,lH ,lI ,0] q;
q← q/|q|;

end
for numPosIters do

SolvePositions(x1, . . .x=,q1, . . .q=);
end
for = bodies and particles do

v← (x−xprev)/ℎ;
Δq← qq−1

prev;
8← 2[ΔqG ,ΔqH ,ΔqI]/ℎ;
8← Δ@F ≥ 0 ? 8 : −8;

end
SolveVelocities(v1, . . .v=,l1, . . .l=);

end
end

The additional lines for integrating the rotational quantities and
deriving the velocities can easily be added to an existing PBD sim-
ulator. The term for integrating angular velocity including external
torques and gyroscopic effects is derived from the Newton-Euler
equations. We refer the reader to Brian Mirtich’s excellent the-
sis [Mir96] for a derivation. To update the quaternions based on the
angular velocity and to derive the angular velocity from the change
of the quaternions we use linearized formulas. They are fast and
robust and well suited for the small time steps used in substepping.
In contrast to simple particles, the implicit solver also manipulates
the orientations of the bodies.

This position based solver allows the simultaneous and coupled
simulation of both rigid and deformable objects. To achieve this we
iterate through all bodies as well as all particles. For the particles
we simply omit the updates of the rotational quantities.

3.3. Core Projection Operations

The modifications to the main loop are straightforward. The chal-
lenging part is the extension of the solver to handle constraints be-
tween finite sized bodies in a positional framework. Fortunately
we only need two basic operations. The tasks of solving arbitrary
joints, handling contacts or coupling rigid with soft bodies can all
be built on top of these operations alone. They are visualized in
Figure 3. The top row shows a distance constraint between two
particles as a reference. Here a correction vector Δx is applied to
project the overstretched constraint to its rest length. To conserve

linear momentum, the correction vector is applied to both parti-
cles proportional to their inverse masses F8 = <

−1
8

. The middle
row shows the first basic operation used for rigid bodies, namely
applying a position correction Δx to solve a generalized distance
constraint between points on two bodies. The points are defined by
the vectors r1 and r2 relative to the center of mass. To conserve lin-
ear and angular momentum, the operation changes the positions as
well as the orientations of both bodies proportional to their general-
ized inverse masses. The second operation is applying a rotational
correction to two bodies as shown in the bottom row. In this partic-
ular case, the correction is applied to align the orientations of the
two bodies. To conserve angular momentum, it has to be distributed
among the two bodies proportional to their inverse moments of in-
ertia. We derive the formulas for the updates from impulse based
dynamics in the Appendix. Here we show the final versions to be
used in an implementation.

3.3.1. Positional Constraints

To apply a positional correction Δx at positions r1 and r2, we first
split it into its direction n and its magnitude 2. The latter corre-
sponds to the evaluation of the constraint function in PBD. We then
compute the two generalized inverse masses

F1←
1
<1
+ (r1 ×n)) I−1

1 (r1 ×n) (2)

F2←
1
<2
+ (r2 ×n)) I−1

2 (r2 ×n). (3)

Following XPBD, we compute the Lagrange multiplier updates

Δ_← −2− Ũ_
F1 +F2 + Ũ

(4)

_← _+Δ_ (5)

where Ũ = U/ℎ2 and U the compliance of the constraint. One mul-
tiplier _ is stored for each compliant constraint. It is set to zero be-
fore the iterative solver starts. The compliance corresponds to the
inverse of the stiffness and has the unit meters / Newton. Working
with the compliance allows the simulation of infinitely stiff con-
straints by setting U = 0. Setting the positional impulse p = Δ_n we
update the states of the bodies immediately after each constraint
solve via

x1← x1 +p/<1 (6)

x2← x2 −p/<2 (7)

q1← q1 +
1
2

[
I−1
1 (r1 ×p),0

]
q1 (8)

q2← q2 −
1
2

[
I−1
2 (r2 ×p),0

]
q2. (9)

Note the minus sign in the update of the second body. Imme-
diately updating the bodies after handling each constraint prevents
overshooting and is one of the causes of PBD’s robustness. This re-
sults in a non-linear projected Gauss-Seidel solve. Alternatively a
Jacobi solve can be used for parallel implementations or to remove
the dependence on the order of constraint projection but at the cost
of slower convergence. In this case, the updates are accumulated

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

and applied after each iteration through all constraints. After the
solve, the forces acting along the constraint can be derived as

f = _n/ℎ2. (10)

Connecting a rigid body and a soft body defined as a constrained
particle system is straightforward because each body can be re-
placed with a single particle by setting F← <−1 and omitting the
update of the orientation.

3.3.2. Angular Constraints

For joints we need the ability to constrain the mutual orientation of
two bodies. In this case the correction is a rotation vector Δq ∈ R3.
We split it into its direction n which is the rotation axis and its
magnitude \ which is the rotation angle. The generalized inverse
masses are

F1 = n) I−1
1 n (11)

F2 = n) I−1
2 n (12)

The XPBD updates are the same as before with the angle replac-
ing the distance

Δ_← −\ − Ũ_
F1 +F2 + Ũ

(13)

_← _+Δ_. (14)

This time, the correction only affects the orientations as

q1← q1 +
1
2

[
I−1
1 p,0

]
q1 (15)

q2← q2 −
1
2

[
I−1
2 p,0

]
q2. (16)

It is important to note that the inertia tensor I depends on the ac-
tual orientation of the body. Therefore, it would have to be updated
after every constraint projection. Instead, we project the quantities
n,r and p into the rest state of the bodies before evaluating the ex-
pressions above. For joints, the attachment points r are typically
defined in the rest state already. In addition, we rotate the bodies in
the rest state such that the inertia tensor becomes diagonal which
simplifies the expressions above and allows storing the tensor as a
vector. Analogous to Equation (10) we can derive the torque ex-
erted as

g = _n/ℎ2. (17)

3.4. Joints

We now describe how to handle joints of various types using the
two correction operations defined in the previous section. Joints
attach pairs of bodies and restrict relative positional and rotational
degrees of the bodies.

3.4.1. Rotational Degrees of Freedom

For a joint that aligns the mutual orientations of two bodies we
compute the angular correction as follows:

q = q1 q−1
2 (18)

Δqfixed = 2(@G , @H , @I). (19)

To setup more general joints, an attachment point r̄ as well as a
set of perpendicular unit axes [ā, b̄, c̄] have to be defined on both
bodies in the shape. To handle the joint, these are first transformed
into world space vectors r and [a,b and c].

For a hinge joint, we want the axes a1 and a2 to be aligned. To
achieve this we apply

Δqhinge = a1 ×a2. (20)

To drive a hinge joint towards a specified target angle U we rotate
b1 about a1 by then angle U to get btarget and apply

Δqtarget = btarget ×b2. (21)

The corresponding compliance U controls the stiffness of the con-
straint. With a target angle constraint we can create a velocity
driven motor by updating the target angle via U← U + ℎ E at ev-
ery substep, where E is the target velocity of the motor and the
corresponding compliance its strength.

Handling joint limits is an essential part of a rigid body engine.
For the rotational degrees of freedom this amounts to limiting joint
angles. To do this we use the generic procedure defined in Algo-
rithm 3. It limits the angle between the axes n1 and n2 of two bodies
to be in the interval [U, V] using the common rotation axis n.

Algorithm 3 Handling joint angle limits.

LimitAngle (n,n1,n2, U, V):
q← arcsin((n1 ×n2) ·n);
if n1 ·n2 < 0 then q← c−q;
if q > c then q← q−2c;
if q < −c then q← q+2c;
if q < U or q > V then

q← clamp(q,U, V);
n1← rot(n, q)n1;
Apply(Δqlimit = n1 ×n2);

end
return

For hinge joints with common axis a1 = a2 we use [n,n1,n2] =
[a1,b1,b2].

For spherical joints (also called ball-in-socket joints) we have to
distinguish between swing and twist limits for the motion of axis a2
w.r.t. axis a1. To restrict swing we use [n,n1,n2] = [a1×a2,a1,a2].
Twist must be decoupled from swing. We achieve this with the fol-
lowing axes:

n← (a1 +a2)/(|a1 +a2 |) (22)

n1← b1 − (n ·b1)n; n1← |n1 | (23)

n2← b2 − (n ·b2)n; n2← |n2 | (24)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

All limits can be made soft by using U > 0.

3.4.2. Positional Degrees of Freedom

Handling the positional degrees of freedom is simpler. We first
compute the positional offset as Δr = r2 − r1. Setting Δx = Δr at-
taches the bodies without separation which is the typical case for
joints. Using U > 0 allows the simulation of a spring with zero rest
length. We can make this more flexible by defining an upper limit
3max for the separation distance. In this case we only apply a cor-
rection if |Δr| > 3max and use the correction

Δx =
Δr
|Δr| (|Δr| − 3max). (25)

We can also relax the fixed attachment by allowing the bodies
to move within boundaries along a subset of the axes. For this we
start with Δx = 0. For the first axis a1 we compute the projected
displacement 0 = Δr · a1. If 0 < 0min we add a1 (0 − 0min) to the
correction vector, if 0 > 0max we add a1 (0− 0max). We do this for
all axes and all limits before we apply the final correction vector.
This way, all limits are treated with a single constraint projection.

Setting all limits except the ones for the first axis to zero simu-
lates a prismatic joint. For a robot we might want to drive the joint
to a particular offset. Replacing 3max by 3target in Eqn.(25) and
applying the correction unconditionally achieves this. Choosing a
compliance of U = 1/ 5 (|Δr| − 3target) applies a force 5 .

Joint handling shows the advantage of working on the positional
layer with the non-linear Gauss-Seidel approach. Unilateral con-
straints are simply handled by applying corrections only when cer-
tain conditions hold. Also, the corrections are always aligned with
the current offsets and errors. In addition, attachments are handled
with a single constraint instead of three in linearized solvers.

3.5. Handling Contacts and Friction

To save computational cost we collect potential collision pairs
once per time step instead of once per sub-step using a tree of
axis aligned bounding boxes. We expand the boxes by a distance
:ΔC Ebody, where : ≥ 1 is a safety multiplier accounting for poten-
tial accelerations during the time step. We use : = 2 in our exam-
ples.

At each substep we iterate through the pairs checking for actual
collisions. If a collision occurs we compute the current contact nor-
mal and the local contact positions r1 and r2 with respect to body
1 and 2. We also initialize two Lagrange multipliers for the normal
and tangential forces _= and _C with zero. To handle a contact dur-
ing the position solve we compute the contact positions on the two
bodies at the current state and before the substep integration as

p1 = x1 +q1 r1

p2 = x2 +q2 r2

p̄1 = x1,prev +q1,prev r1 and

p̄2 = x2,prev +q2,prev r2,

(26)

where the product of a quaternion and a vector refers to rotating
the vector using the quaternion. The current penetration can be
computed as 3 = (p1 − p2) · n. If 3 ≤ 0 we skip the contact. The

non-linear Gauss-Seidel solver lets us handle the complementarity
condition by simply checking it on a per constraint basis. If the
bodies are penetrating we apply Δx = 3n using U = 0 and _=.

To handle static friction we compute the relative motion of the
contact points and its tangential component

Δp = (p1 − p̄1) − (p2 − p̄2) (27)

ΔpC = Δp− (Δp ·n)n. (28)

Static friction prevents tangential motion at the contact points
which is the case if ΔpC = 0. Therefore, to enforce static friction
we apply Δx = ΔpC at the contact points with U = 0 but only if
C < `B=, where `B is the static friction coefficient. If the two
bodies have different coefficients, we use ` = (`1 + `2)/2. Another
option would be to take the maximum or minimum value.

3.6. Velocity Level

PBD updates the velocities after the position solve and then im-
mediately goes to the next substep. However, to handle dynamic
friction and restitution we append a velocity solve as shown in Al-
gorithm 2. Here we iterate once through all the contacts and update
the new velocities.

For each contact pair we compute the relative normal and tan-
gential velocities at the contact point as

v← (v1 +l1 × r1) − (v2 +l2 × r2)
E=← n ·v (29)

vC ← v−nE= .

The friction force is integrated explicitly by computing the ve-
locity update

Δv←− vC
|vC |

min(ℎ `3 | 5= |, |vC |), (30)

where `3 is the dynamic friction coefficient and 5= = _=/ℎ2 the
normal force. This update corresponds to the explicit application of
the dynamic Coulomb friction force. The explicit form in connec-
tion with a Gauss-Seidel update allows us to make this step uncon-
ditionally stable! The minimum guarantees that the magnitude of
the velocity correction never exceeds the magnitude of the velocity
itself.

We also use the velocity pass to apply joint damping via

Δv← (v2 −v1)min(`linℎ,1) (31)

Δl← (l2 −l1)min(`angℎ,1). (32)

According to the derivation in the Appendix applying a velocity
update Δv at positions r1 and r2 is achieved by the following steps:

p =
Δv

F1 +F2
v1← v1 +p/<1

v2← v2 −p/<2

81← 81 + I−1
1 (r1 ×p)

82← 82 − I−1
2 (r2 ×p).

(33)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

Example substeps iters/substep time (ms/frame)

3 Boxes 20 1 0.34
7 Boxes 20 1 0.44
Pendula 40 1 0.07, 0.09, 0.2
Bunnies 20 1 2.3
Rolling balls 10 1 15
Coin 20 1 0.3
Car 20 1 18
Robot 20 1 0.4
Rope 20 1 3.5

Table 1: Computation times. We used a simulation time step of
1/60s per frame in all cases.

To handle restitution we also need Ē=, the normal velocity before
the PBD velocity update. We compute this quantity by applying
Eqn 29 to the pre-update velocities. Given the restitution coeffi-
cient 4 we want the normal velocity at the contact to be −4Ē=. By
applying

Δv← n(−E= +min(−4 Ẽ=,0)), (34)

we subtract the current velocity E= and replace it with the reflected
velocity −4Ē= making sure that the resulting velocity points in the
direction of the collision normal. To avoid jittering we set 4 = 0 if
|E= | is small. We use a threshold of |E= | ≤ 2|g|ℎ, where g is gravity.
This value corresponds to two times the velocity the prediction step
adds due to gravitational acceleration.

This step also alleviates an important problem of PBD. The ve-
locities created by the regular velocity update step of PBD are only
meaningful if no collisions have occured during the last time step.
Otherwise they simply reflect the penetration depth which is de-
pendent on the time discretization of the trajectory. Also, if objects
are created in an overlapped state, PBD yields large separating ve-
locities. Eqn (34) eliminates the derived velocity at an impact and
replaces it with the one from the previous time step considering the
restitution coefficient. In the case of initially overlapping objects,
this velocity is zero.

4. Results

For our demos we used a system with a Core-i7 CPU at 3.6 GHz
and 32 GB of RAM. Table 1 shows the simulation times per frame
for the various examples.

The capabilities and performance of our method are best seen in
the accompanying video. We will first discuss a few basic technical
scenarios that we performed with our test application. The appli-
cation allows the visualization of forces, torques and elongations
at the joints. Figure 4 shows a set of boxes which are attached to
the static ceiling via distance joints. All springs have compliance
0.01</# . The larger and smaller boxes have masses 1 and 1/8kg,
respectively and we set gravity to 10</B2. The simulation yields
the correct elongations and forces independent of the number of
iterations and sub-steps.

The same holds for joint torques. Figure 5 shows a bar that is
attached via a hinge joint which has a target angle of zero degrees

Figure 4: Our test application allows the visualization of forces,
torques and elongations dynamically. Compliance, forces and elon-
gation are in the correct relation independent of the substep and
iteration counts.

Figure 5: The yellow line shows a spring with a fixed compliance
that is attached to the mouse. This bar is attached on the left via
a hinge joint that has a target angle of zero with zero compliance.
The joint applies the correct torque to hold the bar straight.

with zero compliance. It exerts the correct torque to counteract the
force that is applied by the user a distance of 202< away from
the rotation center. With XPBD it is straightforward to specify an
infinitely stiff joint by setting the compliance to zero which is not
the case for force or impulse based systems.

Figure 6 shows an experiment with large mass ratios. A small
box of one gram is attached to the static ceiling via a distance
joint. Below it hangs a heavy box of one kilogram attached via an-
other distance joint. The experiment is duplicated with compliances
0.01,0.001 and 0</# . Our method handles this situation stably. In
the case of non-zero compliance, the distances are proportional to
the forces. In the case of zero compliance the distance remains zero
independent of the force. With 20 substeps a small error at the top
joint remains.

In Figure 7 we show prismatic, hinge and ball-in-socket joint
with various joint limits and target angles and target offsets. With
simple hinge joints it is possible to reproduce the behavior of a dou-
ble, a triple and a closed loop pendulum as shown in Figure 8. The
typical chaotic motion only emerges with small time steps and a
small amount of damping. With 40 substeps and one iteration the
pendula keep on swinging for a long time. Using 1 substep but an
arbitrary number of solver iterations - 100 in our example - the pen-
dula come to rest very quickly. Figure 9 shows the evolution of the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

Figure 6: Handling large mass ratios: A small box of 1 gram is
attached to the ceiling via a distance constraint and holds a box
of 1 kilogram via a second joint. The compliances of the joints are
from left to right 0.01,0.001 and 0 m/N.

Figure 7: With our method we can create a variety of joint types
with target angles and soft and hard joint limits.

Figure 8: Substepping yields the correct behavior of the double
and triple pendula. We can easily simulate a closed loop pendulum
as well.

En
er

gy

Time (s)
0 1 2 3 4 5 6 7 8 9 10

20 x 1
10 x 2
5 x 4
2 x 10
1 x 20

Figure 9: Energy conservation during the simulation of the triple
pendulum dependent on the number of substeps and solver itera-
tions.

Figure 10: The simulation of a chain of 100 bunnies hanging from
the ceiling demonstrates the effectiveness of substepping. Left: 1
substep, 20 iterations, right: 20 substeps, 1 iteration.

energy during the simulation of the triple pendulum dependent on
the number of substeps and solver iterations. As discussed before,
the best choice is to replace all solver iterations by substeps.

To verify that this is the case for constraint errors as well, we
created a chain of 100 bunnies hanging from the ceiling as shown
in Figure 10. We tested a variety of substep and iteration count
combinations for a fixed time budget. Figure 11 shows the relative

El
o

n
ga

ti
o

n
 (

%
)

Substeps x Iterations

0%

20 x 1 10 x 2 5 x 4 2 x 10 1 x 20

10%

20%

30%

Figure 11: Elongation of the bunny chains dependent on the num-
ber of substeps and solver iterations

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

Figure 12: From top to bottom: Initial condition, after the hit of
the red marble using our velocity pass and a restitution of 1 and
the state resulting from the regular PBD velocity derivation.

Figure 13: The marbles are created penetrating the wires. Top:
Regular PBD creates large velocities causing the marbles to jump
off the track. Bottom: The marbles are pushed up gently and remain
on the track.

elongation of the chain for each case. Again, replacing all solver
iterations by substeps is by far the best choice. The accompanying
video shows the impressive difference in behavior.

The velocity pass we described in Section 3.6 yields proper im-
pulse propagation as shown in Figure 12. Here a single marble hits
a group of three marbles from the right. The impulse is correctly
transferred to the right most marble as shown in the middle. The
bottom image shows the situation after the hit when using the ve-
locity derivation of PBD.

In the scene shown in Figure 13 the marbles penetrate the wires
in the initial state. The velocity derivation of PBD yields large ve-
locities causing the marbles jumping off the track (top image) while
they stay on the track with our method (bottom image).

We created two larger scenes tailored to demonstrate the advan-
tages of our method: a rolling ball sculpture and a remote controlled
car travelling over bumpy terrain and obstacles shown in Figure 1.

The rolling ball demo is an attempt to reproduce the fascinat-
ing sculptures of David Morell [Mor] including the clever mecha-
nisms in a simulation. In certain elements such as the spring shown
in Figure 14 the marbles perform a quarter turn in a single time
step. Simulating such fast curved motions requires substepping and
the use of current constraint normals for each projection. Here, the
most expensive part is collision handling, in particular finding the
closest point on a Hermite spline segment. Our method also allows
us to reproduce the high frequency motion of a coin before it comes
to rest as shown in Figure 15.

Figure 14: In certain elements of the sculpture the marbles perform
large turns in a single time step which requires the use of current
constraint directions for each projection.

Figure 15: With the ability of handling curved geometry and sub-
stepping we are able to reproduce the high frequency motion of a
coin shortly before it comes to rest.

The simulation of the remote controlled car demonstrates how
our method handles the coupling of the soft body tires with the rigid
rims. It also shows how well sub-stepping handles large mass ratios.
We simulate the entire steering mechanism from servo to wheels as
shown in Figure 16. The mass ration between the servo arm and the
wheels is 1:760. The servo arm is 3cm long while the wheels have
a diameter of 15cm. Nevertheless, the servo motor is strong enough
to turn the big wheels at high speed against the obstacles and the
terrain. Using actual constraint directions is important because a
remote controlled car experiences much higher accelerations and
changes in direction than a regular car. Our method also resolves
the high frequency vibrations giving the feel for the high stiffness
of the springs. The most expensive part is the simulation of the
wheels. We have found that using FEM on tetrahedra did not yield
the stiffness needed within the time budget. Instead, we perform

Figure 16: We simulate the steering mechanism from the small arm
at the servo to the big wheels with a mass ratio of 1:760.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

Figure 17: Our method can be used to solve inverse kinematics
problems for overconstrained systems with possibly redundant de-
grees of freedom such as this robot arm.

Figure 18: The separate handling of swing and twist limits allows
the simulation of a twisted rope.

per element shape matching [MHTG05] on the 1100 hexahedral
elements of the tires.

Finally we created two scenarios to show the importance and
usefulness of joint limit handling. Figure 17 shows that our method
can be used to solve the inverse kinematic problem to make the
robot gripper following the gray box while respecting all joint lim-
its. Unreachable positions yield overconstrained problems which
our method handles gracefully by moving the gripper as close as
possible to the target pose. Our method allows the user to spec-
ify independent limits on swing and twist degrees of freedom with
different compliances. This allows us to simulate the twisted rope
shown in Figure 18 with the correct behavior as a simple chain of
100 capsules connected by spherical joints.

5. Conclusion

We have presented a rigid body simulation method than can ac-
curately resolve small temporal and spatial detail. Because it is
based on XPBD, it inherits XPBD’s simplicity and ability to handle
infinitely stiff joints. Substepping increases accuracy and energy

conservation. It also allows the handling of large mass ratios and
fast directional changes within a single time step. We have shown
that two basic projection operations are sufficient to build a fully
fledged rigid body engine in a straightforward way. For snippets of
source code we refer the reader to our challenges page [Mue20].

A drawback of substepping is that it does not damp out high
frequency vibrations due to reduced numerical damping. This can
yield visual jittering. However, numerical damping can easily be
reintroduced by adding true physical damping. Also, for small time
steps, double precision floating point numbers are required. While
doubles are as fast as floats on CPUs, they currently still reduce the
performance on GPUs. Updating constraint directions after each
projection might cause instabilities when simulating tall stacks or
piles of objects. Investigating this problem is one of our directions
of future work.

References

[Bar93] BARAFF D.: Non-penetrating rigid body simulation. State of the
art reports (1993). 3

[Bar97] BARAFF D.: An introduction to physically based modeling:
Rigid body simulation. In SIGGRAPH ’97 Course Notes (1997). 2

[BB04] BLOW J., BINSTOCK A.: How to find the inertia tensor (or other
mass properties) of a 3d solid body represented by a triangle mesh. 4

[BET14] BENDER J., ERLEBEN K., TRINKLE J.: Interac-
tive simulation of rigid body dynamics in computer graph-
ics. Computer Graphics Forum 33, 1 (2014), 246–270. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.12272, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1111/cgf.12272, doi:10.1111/cgf.12272.
3

[DBDB11] DAVIET G., BERTAILS-DESCOUBES F., BOISSIEUX L.: A
hybrid iterative solver for robustly capturing coulomb friction in hair dy-
namics. In ACM Transactions on Graphics (TOG) (2011), vol. 30, ACM,
p. 139. 2

[DCB14] DEUL C., CHARRIER P., BENDER J.: Position-based rigid
body dynamics. Computer Animation and Virtual Worlds 27, 2 (2014),
103–112. URL: http://dx.doi.org/10.1002/cav.1614,
doi:10.1002/cav.1614. 2, 3

[Erl17] ERLEBEN K.: Rigid body contact problems using proximal op-
erators. In Proceedings of the ACM Symposium on Computer Animation
(2017), p. 13. 2

[GCC∗] GALVEZ J., CAVALIERI F. J., COSIMO A., BRÜLS
O., CARDONA A.: A nonsmooth frictional contact formu-
lation for multibody system dynamics. International Jour-
nal for Numerical Methods in Engineering n/a, n/a. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/
nme.6371, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1002/nme.6371, doi:10.1002/nme.6371. 3

[Hec97] HECKER C.: The third dimension. Game Developer Mag-
azine (June 1997). URL: chrishecker.com/Rigid_Body_
Dynamics. 2

[KSJP08] KAUFMAN D. M., SUEDA S., JAMES D. L., PAI D. K.: Stag-
gered projections for frictional contact in multibody systems. In ACM
Transactions on Graphics (TOG) (2008), vol. 27, ACM, p. 164. 2

[MC95] MIRTICH B., CANNY J.: Impulse-based simulation of rigid bod-
ies. In Proceedings of the 1995 Symposium on Interactive 3D Graphics
(New York, NY, USA, 1995), I3D ’95, Association for Computing Ma-
chinery, p. 181–ff. URL: https://doi.org/10.1145/199404.
199436, doi:10.1145/199404.199436. 1

[MC11] MÜLLER M., CHENTANEZ N.: Solid simulation with oriented

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12272
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12272
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12272
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12272
https://doi.org/10.1111/cgf.12272
http://dx.doi.org/10.1002/cav.1614
https://doi.org/10.1002/cav.1614
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6371
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6371
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6371
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6371
https://doi.org/10.1002/nme.6371
chrishecker.com/Rigid_Body_Dynamics
chrishecker.com/Rigid_Body_Dynamics
https://doi.org/10.1145/199404.199436
https://doi.org/10.1145/199404.199436
https://doi.org/10.1145/199404.199436

M. Müller et al. / Detailed Rigid Body Simulation with Extended Position Based Dynamics

particles. ACM Trans. Graph. 30, 4 (July 2011). URL: https://doi.
org/10.1145/2010324.1964987, doi:10.1145/2010324.
1964987. 3

[MEM∗19] MACKLIN M., ERLEBEN K., MÜLLER M., CHENTANEZ
N., JESCHKE S., MAKOVIYCHUK V.: Non-smooth newton methods
for deformable multi-body dynamics. ACM Trans. Graph. 38, 5 (Oct.
2019). URL: https://doi.org/10.1145/3338695, doi:10.
1145/3338695. 2

[MHR06] MÜLLER M., HENNIX B. H. M., RATCLIFF J.: Position based
dynamics. Proceedings of Virtual Reality Interactions and Physical Sim-
ulations (2006), 71–80. 2

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M., GROSS
M.: Meshless deformations based on shape matching. ACM
Trans. Graph. 24, 3 (July 2005), 471–478. URL: https://doi.
org/10.1145/1073204.1073216, doi:10.1145/1073204.
1073216. 2, 11

[Mir96] MIRTICH B. V.: Impulse-based Dynamic Simulation of Rigid
Body Systems. PhD thesis, 1996. AAI9723116. 5

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans.
Graph. 32, 4 (July 2013). URL: https://doi.org/10.1145/
2461912.2461984, doi:10.1145/2461912.2461984. 2

[MMC16] MACKLIN M., MÜLLER M., CHENTANEZ N.: Xpbd:
Position-based simulation of compliant constrained dynamics. In Pro-
ceedings of the 9th International Conference on Motion in Games (New
York, NY, USA, 2016), MIG ’16, Association for Computing Machin-
ery, p. 49–54. URL: https://doi.org/10.1145/2994258.
2994272, doi:10.1145/2994258.2994272. 2, 3

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM T.-Y.:
Unified particle physics for real-time applications. ACM Trans. Graph.
33, 4 (July 2014). URL: https://doi.org/10.1145/2601097.
2601152, doi:10.1145/2601097.2601152. 2

[MMM14] MASARATI P., MORANDINI M., MANTEGAZZA P.: An Ef-
ficient Formulation for General-Purpose Multibody/Multiphysics Anal-
ysis. Journal of Computational and Nonlinear Dynamics 9, 4 (07
2014). 041001. URL: https://doi.org/10.1115/1.4025628,
doi:10.1115/1.4025628. 3

[Mor] MORRELL D.: Rolling ball sculptures. URL: https://www.
rollingballsculpture.com.au. 10

[MSL∗19] MACKLIN M., STOREY K., LU M., TERDIMAN P., CHEN-
TANEZ N., JESCHKE S., MÜLLER M.: Small steps in physics simula-
tion. In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (New York, NY, USA, 2019), SCA
’19, Association for Computing Machinery. URL: https://doi.
org/10.1145/3309486.3340247, doi:10.1145/3309486.
3340247. 3, 4

[Mue20] MUELLER M.: Web page, 2020. URL: matthiasmueller.
info/challenges/challenges.html. 11

[OCC77] ORLANDEA N., CHACE M. A., CALAHAN D. A.: A sparsity-
oriented approach to the dynamic analysis and design of mechanical sys-
tems—part 1. 3

[Rya90] RYAN R.: Adams—multibody system analysis software. In
Multibody systems handbook. Springer, 1990, pp. 361–402. 3

[ST96] STEWART D. E., TRINKLE J. C.: An implicit time-stepping
scheme for rigid body dynamics with inelastic collisions and coulomb
friction. International Journal for Numerical Methods in Engineering
39, 15 (1996), 2673–2691. 2

[Sta09] STAM J.: Nucleus: Towards a unified dynamics solver for
computer graphics. In Computer-Aided Design and Computer Graph-
ics, 2009. CAD/Graphics’ 09. 11th IEEE International Conference on
(2009), IEEE, pp. 1–11. 2

[USS15] UMETANI N., SCHMIDT R., STAM J.: Position-based elastic
rods. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (Goslar, DEU, 2015), SCA ’14, Eurographics
Association, p. 21–30. 3

[WSPJ17] WANG J.-H., SETALURI R., PAI D. K., JAMES D. L.:
Bounce maps: An improved restitution model for real-time rigid-body
impact. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2017) 36, 4 (July 2017). doi:https://doi.org/10.1145/
3072959.3073634. 3

[XZB14] XU H., ZHAO Y., BARBIČ J.: Implicit multibody penalty-
baseddistributed contact. IEEE Transactions on Visualization and Com-
puter Graphics 20, 9 (2014), 1266–1279. 3

Appendix A: Appendix

Derivation of the Position Based Updates

In impulse based rigid body solvers, impulses are applied to bodies
to change velocities at contact points. Let r be the vector from the
center of mass to the contact point. Applying an impulse p at the
contact point has two effects. It changes the velocity vcm of the
center of mass and the angular velocity l of the body via

p = <Δvcm (35)

r×p = IΔl, (36)

where < and I are the mass and the moment of inertia of the body,
respectively. The velocity at the contact point is

v = vcm +l× r. (37)

Given the contact normal n we can express both the impulse and
the velocity change along the normal as scalars and derive a rela-
tionship between the two as follows:

ΔE = [Δvcm +Δl× r] ·n (38)

=

[
p<−1 +

(
I−1 (r×p)

)
× r

]
·n (39)

= ?

[
n<−1 +

(
I−1 (r×n)

)
× r

]
·n (40)

= ?

[
n ·n<−1 +

(
I−1 (r×n)

)
× r ·n

]
(41)

= ?

[
<−1 + (r×n)) I−1 (r×n)

]
(42)

= ?F, (43)

where F can be interpreted as a generalized inverse mass. Apply-
ing an impulse ? at the contact point between two bodies yields
a total velocity change of ΔE = ΔE1 +ΔE2 = ?(F1 +F2). In other
words, we can change the velocity at the contact point by applying
an impulse ? = ΔE/(F1 +F2). Once the impulse is known, we can
compute the change of vcm and l as via

Δvcm = p<−1 (44)

Δl = I−1 (r×p). (45)

To go from the velocity to the positional level, we conceptually
multiply these equations by time. This turns the velocity correction
Δv into a positional correction Δx and the impulse into a quan-
tity of the unit mass times distance. The definition of the general-
ized mass is unchanged. The update of the velocity of the center of
mass turns into an update of the position of the center of mass. The
update of the angular velocity turns into a rotation. To apply the ro-
tation to the orientations we use the linearized quaternion updates
from Algorithm 2.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/3338695
https://doi.org/10.1145/3338695
https://doi.org/10.1145/3338695
https://doi.org/10.1145/1073204.1073216
https://doi.org/10.1145/1073204.1073216
https://doi.org/10.1145/1073204.1073216
https://doi.org/10.1145/1073204.1073216
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1115/1.4025628
https://doi.org/10.1115/1.4025628
https://www.rollingballsculpture.com.au
https://www.rollingballsculpture.com.au
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247
matthiasmueller.info/challenges/challenges.html
matthiasmueller.info/challenges/challenges.html
https://doi.org/https://doi.org/10.1145/3072959.3073634
https://doi.org/https://doi.org/10.1145/3072959.3073634

