

T6: Position-Based Simulation Methods in Computer Graphics

Jan Bender Miles Macklin Matthias Müller

Jan Bender

- Organizer
- Professor at the Visual Computing Institute at Aachen University
- Research topics
 - Rigid bodies, deformable solids, fluids
 - Collision detection, fracture, real-time visualization
 - Position based methods
- Maintains open source PBD code base
 - github.com/InteractiveComputerGraphics/PositionBasedDynamics

Miles Macklin

- Principal engineer at NVIDIA
- Inventor and author of FLEX
 - Unified, particle based, position based solver, GPU accelerated
 - UE4 integration
 - <u>developer.nvidia.com/flex</u>
- Research
 - Position based fluids
 - Inventor of XPBD, making PBD truly physical with a simple trick!

Matthias Müller

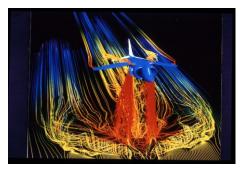
- Leader of physics research group at NVIDIA
- Co-initiator of PBD (with Thomas Jakobsen)
- Co-founder of NovodeX which became physics group at NVIDIA
- Research
 - Co-rotational FEM, SPH
 - Position based methods: cloth, soft bodies, shape matching, oriented particles, air meshes
- <u>www.matthiasmueller.info</u>

Tutorial Outline

- Matthias
 - Motivation, Basic Idea
 - The solver
 - Constraint examples for solids
 - Solver accelerations
- Miles
 - Fluids
 - XPBD
 - Continuous materials
 - Rigid bodies

Motivation

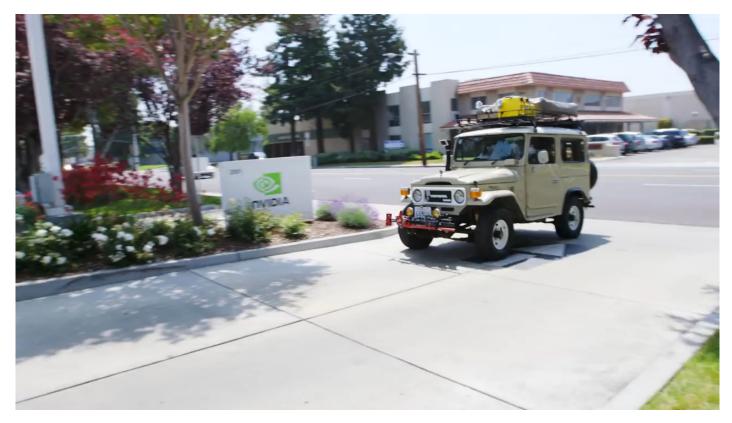
Physical Simulations



- Well studied problem in the computational sciences (since 1940s)
- Complement / replace real experiments
- Extreme conditions, spatial scale, time scale
- Accuracy most important factor
- Low accuracy useless result

Computer Graphics

- Early 1980s
- Adopted methods: FEM, SPH, grid based fluids, ..
- Applications
 - Special effects in movies and commercials
 - Computer games
 - VR
- Requirements
 - Speed, stability, controllability
 - Only visual plausibility
- New methods needed: e.g. PBD

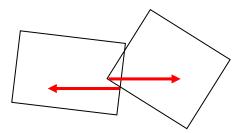


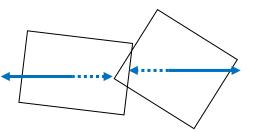
Traditional Methods

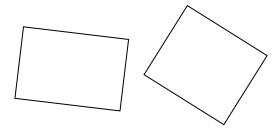
- Typically force based
- Explicit integration
 - Simple and fast
 - Only conditionally stable (bad for real time apps)
- Implicit integration
 - Expensive (multiple linearizations and solves per time step)
 - Numerical damping

Basic Idea

Force Based Update





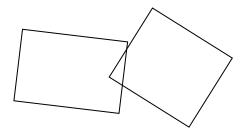


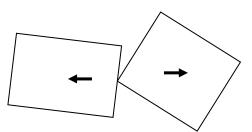
penetration causes forces

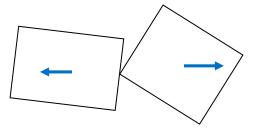
forces change velocities velocities change positions

- Reaction lag
- Small spring stiffness → squashy system
- Large spring stiffness → stiff system, overshooting

Position Based Update







penetration detection only

move objects so that they do not penetrate

update velocities!

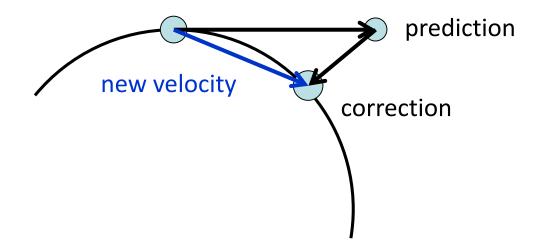
- Controlled position change
- Only as much as needed \rightarrow no overshooting
- Velocity update needed to get 2nd order system!

Position Based Integration

init x ₀ , v ₀ loop		$\mathbf{x}_n, \mathbf{v}_n, \mathbf{p}, \mathbf{u} \in \mathbb{R}^{3N}$
\mathbf{v}_n	$\leftarrow \mathbf{v}_n + \Delta t \cdot \mathbf{f}_{ext}(\mathbf{x}_n)$	velocity update
р	$\leftarrow \mathbf{x}_n + \Delta t \cdot \mathbf{v}_n$	prediction
\mathbf{x}_{n+1}	\leftarrow modify p	position correction
u	$\leftarrow (\mathbf{x}_{n+1} - \mathbf{x}_n) / \Delta t$	velocity update
\mathbf{v}_{n+1}	\leftarrow modify u	velocity correction
end loop		

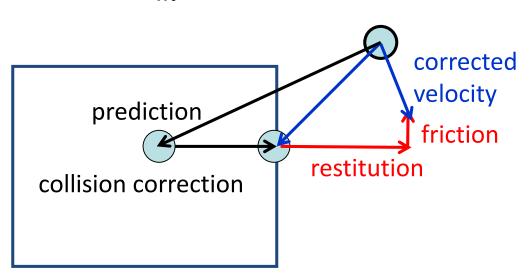
Position Correction

• Example: Particle on circle

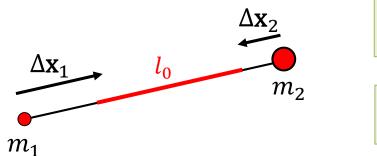


Velocity Correction

- External forces: $\mathbf{v}_{n+1} = \mathbf{u} + \Delta t \frac{\mathbf{g}}{m}$
- Internal damping
- Friction
- Restitution



Distance Constraint



$$\Delta \mathbf{x}_{1} = -\frac{w_{1}}{w_{1} + w_{2}} (|\mathbf{x}_{1} - \mathbf{x}_{2}| - l_{0}) \frac{\mathbf{x}_{1} - \mathbf{x}_{2}}{|\mathbf{x}_{1} - \mathbf{x}_{2}|}$$
$$\Delta \mathbf{x}_{2} = +\frac{w_{2}}{w_{1} + w_{2}} (|\mathbf{x}_{1} - \mathbf{x}_{2}| - l_{0}) \frac{\mathbf{x}_{1} - \mathbf{x}_{2}}{|\mathbf{x}_{1} - \mathbf{x}_{2}|}$$

- Conservation of momentum
- Stiffness: scale corrections by $k \in [0,1]$
 - Easy to tune
 - Effect dependent on time step size and iteration count
 - Fixed! See XPBD

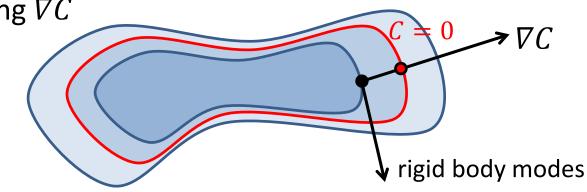
General Internal Constraint

• Define constraint via scalar function:

 $C_{stretch}(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 - \mathbf{x}_2| - l_0$

$$C_{volume}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = [(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)] \cdot (\mathbf{x}_4 - \mathbf{x}_1) - 6v_0$$

- Find configuration for which C = 0
- Search along ∇C



Constraint Projection

$$C(\mathbf{x} + \Delta \mathbf{x}) = 0$$

- Linearization (equal for distance constraint) $C(\mathbf{x} + \Delta \mathbf{x}) \approx C(\mathbf{x}) + \nabla C(\mathbf{x})^T \Delta \mathbf{x} = 0$
- Correction vectors

$$\Delta \mathbf{x} = \lambda \, \nabla C(\mathbf{x}) \qquad \qquad \Delta \mathbf{x} = \lambda \, \mathsf{M}^{-1} \nabla C(\mathbf{x})$$

$$\lambda = -\frac{C(\mathbf{x})}{\nabla C(\mathbf{x})^T \nabla C(\mathbf{x})}$$

$$\lambda = -\frac{C(\mathbf{x})}{\nabla C(\mathbf{x})^T \mathbf{M}^{-1} \nabla C(\mathbf{x})}$$

$$\mathbf{M} = diag(m_1, m_2, \dots, m_n)$$

The Solver

Constraint Solver

- Gauss-Seidel
 - Iterate through all constraints and apply projection
 - Perform multiple iterations
 - Simple to implement
- Modified Jacobi
 - Process all constraints in parallel
 - Accumulate corrections
 - After each iteration, average corrections [Bridson et al., 2002]
- Both known for slow convergence

Global Solver [Goldenthal et al., 2007]

• Constraint vector

$$C(\mathbf{x}) = \begin{bmatrix} C_1(\mathbf{x}) \\ \cdots \\ C_M(\mathbf{x}) \end{bmatrix} \qquad \nabla C(\mathbf{x}) = \begin{bmatrix} \nabla C_1(\mathbf{x})^T \\ \cdots \\ \nabla C_M(\mathbf{x})^T \end{bmatrix} \qquad \lambda = \begin{bmatrix} \lambda_1 \\ \cdots \\ \lambda_M \end{bmatrix}$$

$$\Delta \mathbf{x} = \mathbf{M}^{-1} \nabla C(\mathbf{x}) \lambda \qquad \qquad \lambda = -\frac{C(\mathbf{x})}{\nabla C(\mathbf{x})^T \mathbf{M}^{-1} \nabla C(\mathbf{x})}$$

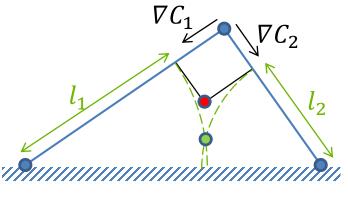
$$\mathbf{\nabla}$$

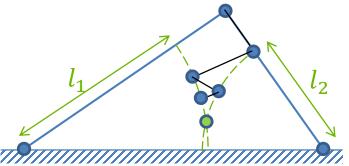
$$\Delta \mathbf{x} = \mathbf{M}^{-1} \nabla \mathbf{C}(\mathbf{x})^T \boldsymbol{\lambda}$$

$$\left[\nabla C(\mathbf{x}) \mathbf{M}^{-1} \nabla \mathbf{C}(\mathbf{x})^T\right] \mathbf{\lambda} = -\mathbf{C}(\mathbf{x})$$

Global vs. Gauss-Seidel

- Gradients fixed
- Linear solution ≠ true solution
- Multiple Newton steps necessary
- Current gradients at each constraint projection
- Solver converges to the true solution





Other Speedup Tricks

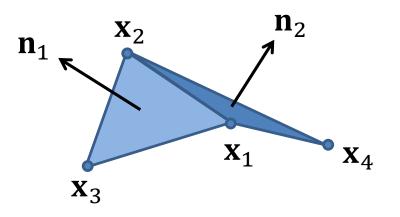
- Use as smoother in a multi-grid method
- Long range distance constraints (LRA)
- Hierarchy of meshes
- Shape matching
 - \rightarrow more details later

Powerful Gauss-Seidel

- Can handle inequality constraints trivially (LCPs, QPs)!
 - Fluids: separating boundary conditions [Chentanez at al., 2012]
 - Rigid bodies: LCP solver [Tonge et al., 2012]
 - Deformable objects: Long range attachments [Kim et al., 2012]
- Works on non-linear problem directly
- Handles under and over-constrained problems
- GS + PBD: garbage in, simulation out (almost ⁽ⁱ⁾)
- Fine grained interleaved solver trivial
- Easy to implement and parallelize

Constraint Examples

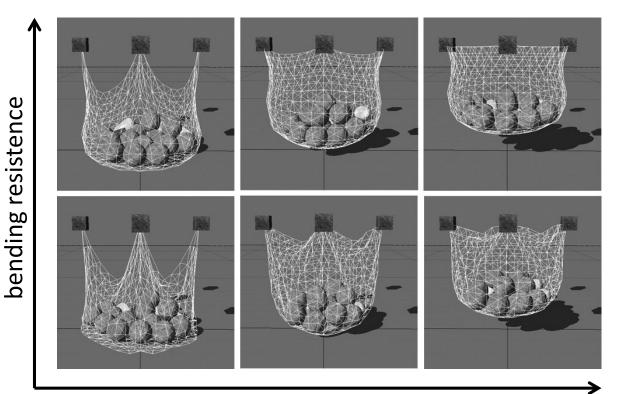
Bending



$$C_{bending}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = acos\left(\frac{(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)}{|(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)|} \cdot \frac{(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_4 - \mathbf{x}_1)}{|(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_4 - \mathbf{x}_1)|}\right) - \varphi_0$$

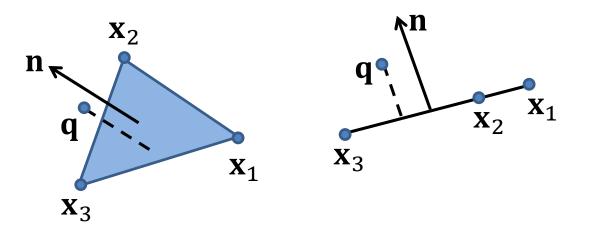
- More expensive than constraint $C_{stretch}(\mathbf{x}_3, \mathbf{x}_4)$
- But: Orthogonal to stretching

Stretching – Bending Independence



stretching resistance

Triangle Collision

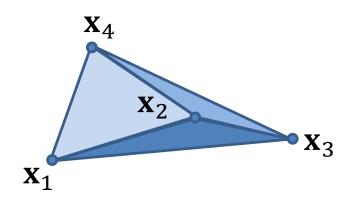


$$C_{coll}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = (\mathbf{q} - \mathbf{x}_1) \cdot \frac{(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)}{|(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)|} - h$$

Cloth Example

King of Wushu

Tetra Volume



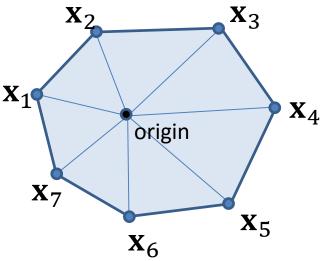
$$C_{air}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = det[\mathbf{x}_2 - \mathbf{x}_1, \mathbf{x}_3 - \mathbf{x}_1, \mathbf{x}_4 - \mathbf{x}_1] - 6V_0$$

Soft Body Example

Global Volume - Balloons

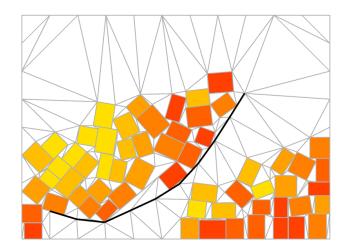
$$C_{balloon}(\mathbf{x}_1,\ldots,\mathbf{x}_N) =$$

$$\frac{1}{6} \left(\sum_{i=1}^{n_{triangles}} \left(\mathbf{x}_{t_1^i} \times \mathbf{x}_{t_2^i} \right) \cdot \mathbf{x}_{t_3^i} \right) - k_{pressure} V_0$$



Air Meshes

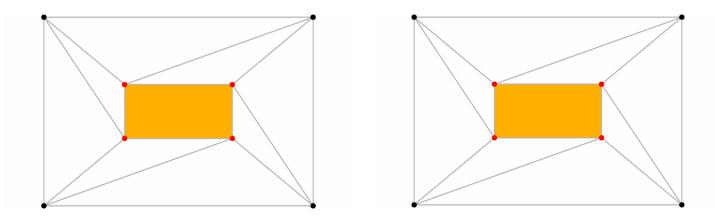
- Triangulate air
- Prevent volume from inverting



• Add one unilateral constraint per cell:

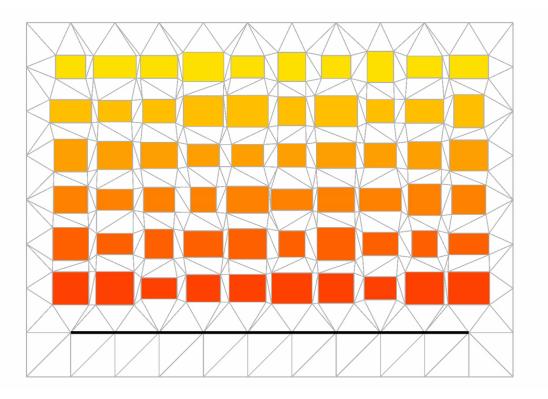
$$C_{air}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = |(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)| \ge 0$$

Locking

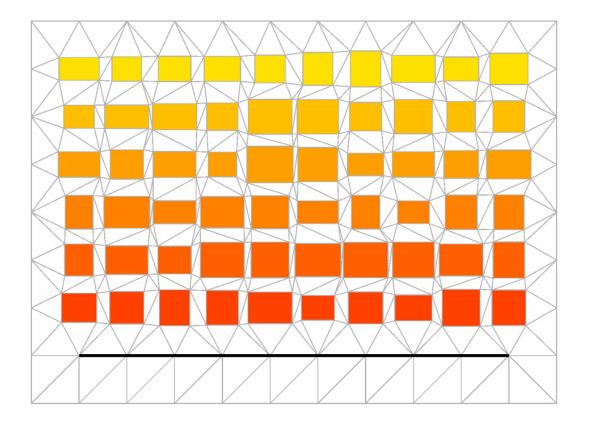


- Elements can invert without collisions
- Solution: Mesh optimization (edge flips)

2D Boxes



Boxes Recovery

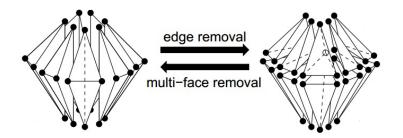


3D Air Meshes

• Per tetra unilateral constraint:

$$C_{air}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = det[\mathbf{x}_2 - \mathbf{x}_1, \mathbf{x}_3 - \mathbf{x}_1, \mathbf{x}_4 - \mathbf{x}_1] \ge 0$$

• Mesh optimization more expensive!



3D Air Meshes

• Two cases that work well without optimization

• Multi-layered clothing

- Tissue collision
- No large relative translations / rotations

Multi-Layered Clothing

Untangling

High Resolution Air Mesh

Tissue Collision Handling

Position Based Fluids

[Macklin et al. 2013]

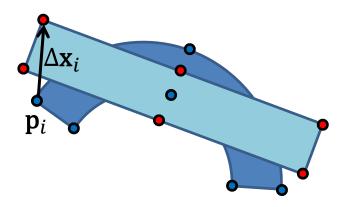
- Particle based
- Pair-wise lower distance constraints
 → granular behavior
- Move particles in local neighborhood such that density = rest density
- Density constraint

$$C(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \rho_{SPH}(\mathbf{x}_1,\ldots,\mathbf{x}_n) - \rho_0$$

Position Based Fluids

Shape Matching

- Optimally match rest with deformed shape
- Only allow translation and rotation



- Global correction, no propagation needed
- No mesh needed!

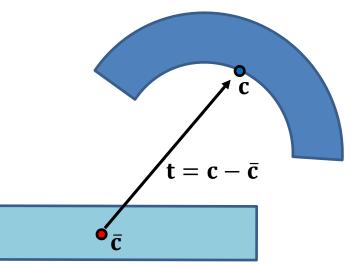
2d Demo

Optimal Translation

- Given rest positions $\overline{\mathbf{x}}_i$, current positions \mathbf{x}_i and masses m_i
- Compute

 $\mathbf{t} = \mathbf{c} - \overline{\mathbf{c}}$

$$\bar{\mathbf{c}} = \frac{1}{M} \sum_{i} m_i \bar{\mathbf{x}}_i \qquad M = \sum_{i} m_i$$
$$\mathbf{c} = \frac{1}{M} \sum_{i} m_i \mathbf{x}_i$$



Optimal Transformation

• The optimal linear transformation is:

$$\mathbf{A} = \left(\sum_{i} m_{i} \mathbf{r}_{i} \mathbf{\bar{r}}_{i}^{T}\right) \left(\sum_{i} m_{i} \mathbf{\bar{r}}_{i} \mathbf{\bar{r}}_{i}^{T}\right)^{-1}$$

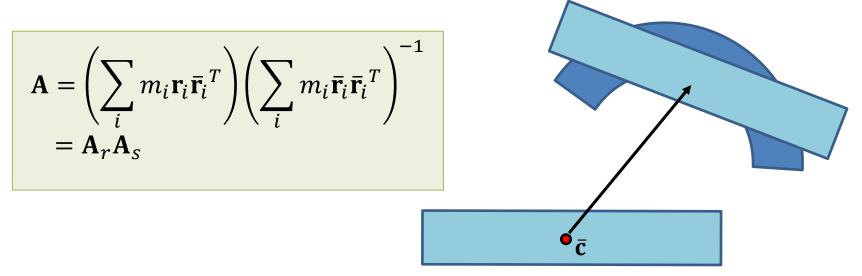
$$= \mathbf{A}_{r} \mathbf{A}_{s}$$

$$\mathbf{\bar{r}}_{i} = \mathbf{\bar{x}}_{i} - \mathbf{\bar{c}}$$

$$\mathbf{r}_{i} = \mathbf{x}_{i} - \mathbf{c}$$

$$\mathbf{\bar{r}}_{i} = \mathbf{x}_{i} - \mathbf{c}$$

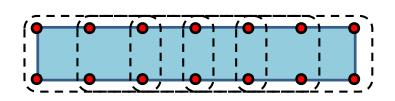
Optimal Rotation

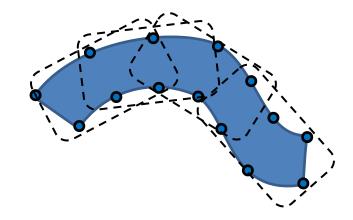


- A_s is symmetric \rightarrow contains no rotation
- Extract rotational part of \mathbf{A}_r
- Polar decomposition

Region Based Shape Matching

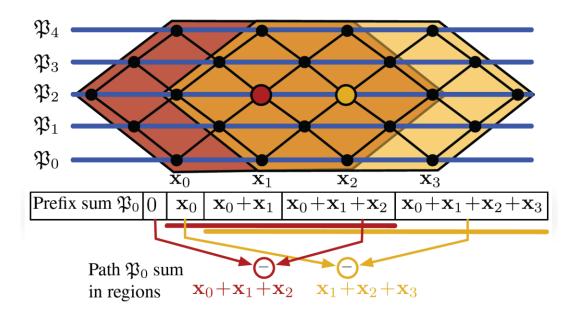
- Shape matching allows only small deviations from the rest shape.
- Performing shape matching on several overlapping regions.
- Each particle is part of multiple regions.



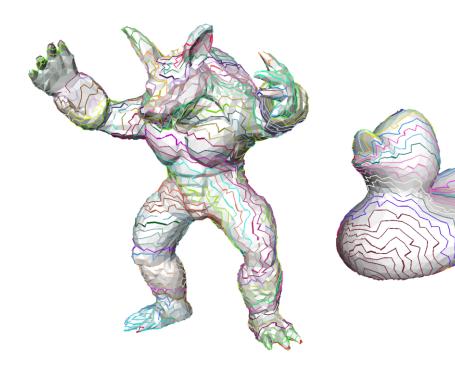


Fast Summation

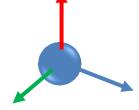
• Compute prefix sum



On Irregular Mesh



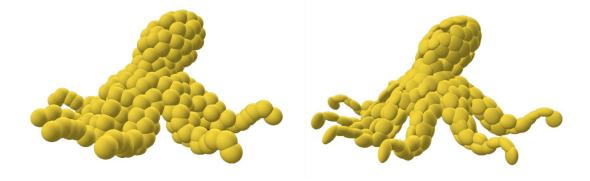
Oriented Particles



- For co-linear, co-planar or isolated particles optimal transformation is not unique → Numerical instabilities
- Add orientation information to particles!

Oriented Particles

- Orientation information can be used
 - to stabilize simulation
 - to position anisotropic collision shapes
 - for robust skinning of visual mesh



Generalized Shape Matching

• Optimal translation is still $\mathbf{t} = \bar{\mathbf{c}} - \mathbf{c}$

• Small modification in the calculation of \mathbf{A}_r

$$\mathbf{A}_{r} = \left(\sum_{i} m_{i} \mathbf{r}_{i} \bar{\mathbf{r}}_{i}^{T} + \mathbf{A}_{i}\right)$$

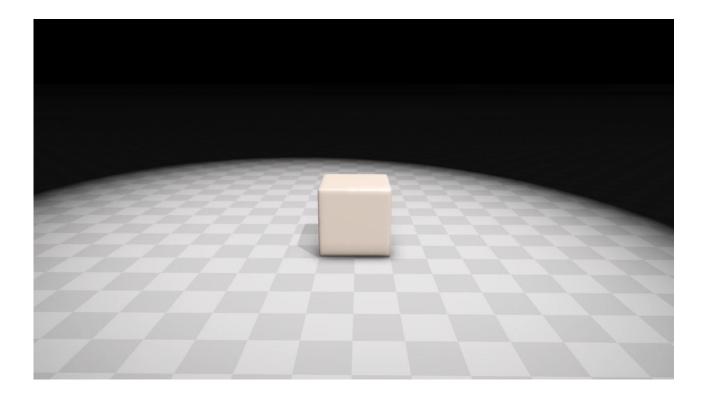
where $\mathbf{A}_i^{\text{sphere}} = \frac{1}{5}mr^2\mathbf{R}$ and \mathbf{R} the particle's rotation matrix

Oriented Particles Demo

Large Elasto-Plastic Deformation

- Handle splits, merges, large deformations
- Use explicit surface mesh to define object
 - Explicit surface tracking for merges and splits
 - Move with particles using linear blend skinning
- Dynamically add and remove particles
 - Remove particles outside surface, resample under-sampled regions
- Dynamically update clusters
 - Control cluster sizes

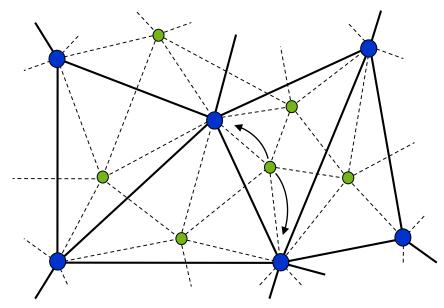
Doug Simulation



Solver Accelerations

Hierarchical PBD

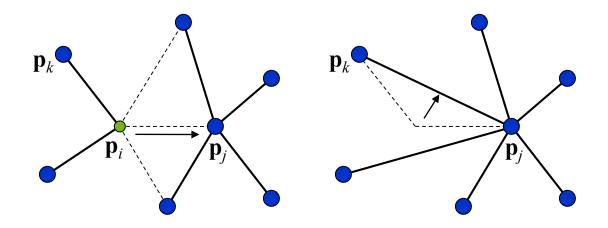
• Create hierarchical mesh



- Next coarser mesh:
 - Subset of vertices
 - Each fine vertex is connected to at least k coarse vertices

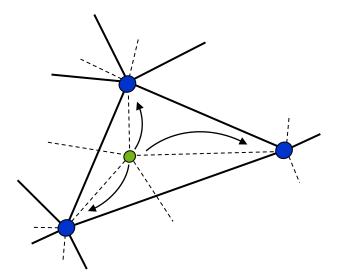
Hierarchical Constraints

• Constraints on coarse meshes



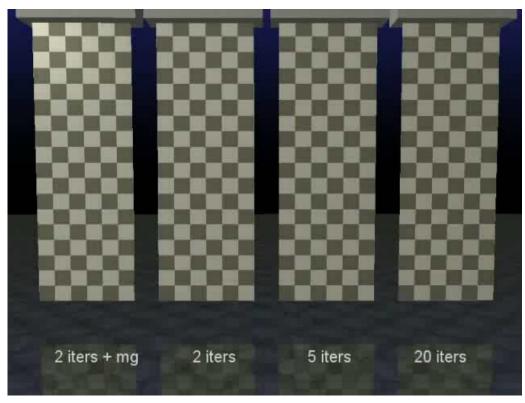
• Unilateral, upper bounds!

Hierarchical Solver

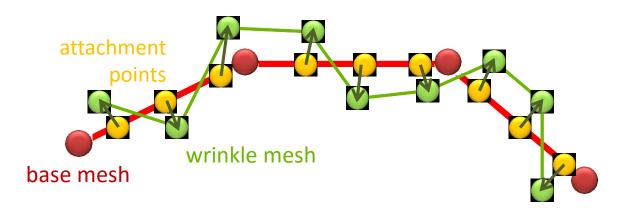


- Solve coarse \rightarrow fine
- Interpolate displacements from next coarser level

Hierarchical PBD



Wrinkle Meshes



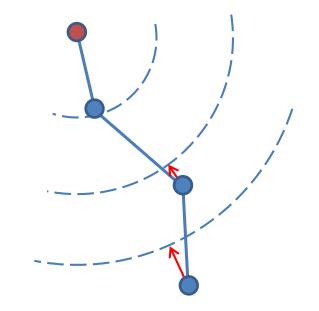
• 4 constraint types, geometric projection

Wrinkle Meshes

Simulated base mesh 2K triangles

Long Range Attachments (LRA)

- Very often cloth is attached (curtain, flags, clothing)
- Upper distance constraint to closest attachment point
- Only radial stretch resistance

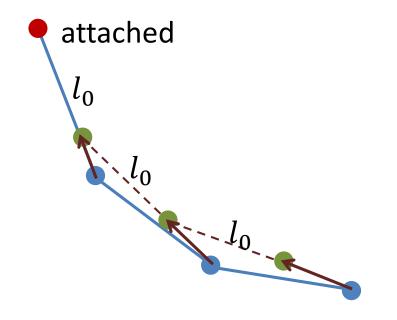


Long Range Attachments (LRA)

[Kim et al., 2012], 90k particles

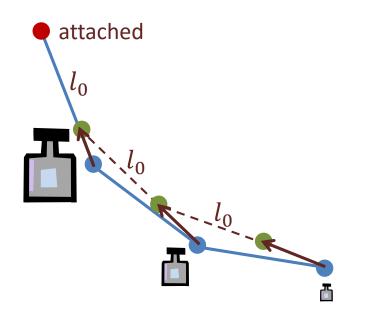
Follow The Leader (FTL)

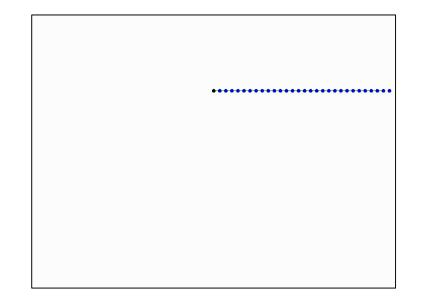
- From top to bottom
- Only move lower particle
- All constraints satisfied!



Follow The Leader (FTL)

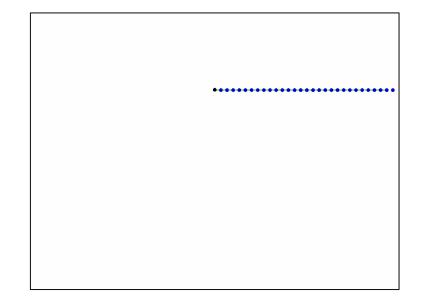
• Momentum not conserved!





Dynamic Follow The Leader (DFTL)

- Update positions one-sided
- Update velocities symmetrically



Fur Demo

