Position-Based Dynamics

Analysis and Implementation

Miles Macklin

Analysis

Position-Based Dynamics

- Very stable
- Highly damped
- Example

Continuous Equations of Motion

- Newton's second law
- Will consider forces which we can derive from an energy potential E(x)
- Our path: start with implicit Euler and transform it into PBD
- Why implicit Euler? Also highly stable, damped.

$$M\ddot{x} = f(x)$$

Implicit Euler Integration

Implicit Euler:

$$\mathbf{v}^{n+1} = \mathbf{v}_n + \Delta t \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}^{n+1})$$

$$\mathbf{x}^{n+1} = \mathbf{x}_n + \Delta t \mathbf{v}^{n+1}$$

• Equivalent to:

$$\mathbf{M}\left(\frac{\mathbf{x}^{n+1} - 2\mathbf{x}^n + \mathbf{x}^{n-1}}{\Delta t^2}\right) = \mathbf{f}(\mathbf{x}^{n+1})$$

- Forces evaluated at end of the time-step
- Implicit, position-level, time-discretization of Newton's equations

Variational Implicit Euler

- Discrete equations of motion
- Are the first order optimality conditions for a non-linear minimization
- [Goldenthal et al. 2007] [Liu et al. 2013]

$$\mathbf{M}(\mathbf{x}^{n+1} - 2\mathbf{x}^n + \mathbf{x}^{n-1}) = \Delta t^2 \mathbf{f}(\mathbf{x}^{n+1})$$

argmin
$$\frac{1}{2}(\mathbf{x}^{n+1} - \tilde{\mathbf{x}})^T \mathbf{M}(\mathbf{x}^{n+1} - \tilde{x}) - \Delta t^2 E(\mathbf{x}^{n+1})$$

$$\tilde{\mathbf{x}} = 2\mathbf{x}^n - \mathbf{x}^{n-1} + \mathbf{M}^{-1}\mathbf{f}_{ext}$$
$$= \mathbf{x}^n + \Delta t\mathbf{v}^n + \mathbf{M}^{-1}\mathbf{f}_{ext}$$

Variational Implicit Euler

 In the limit of infinite stiffness we obtain a constrained minimization

argmin
$$\frac{1}{2}(\mathbf{x}^{n+1} - \tilde{\mathbf{x}})^T \mathbf{M}(\mathbf{x}^{n+1} - \tilde{x}) - \Delta t^2 E(\mathbf{x}^{n+1})$$

 $E \to \infty$

argmin
$$\frac{1}{2}(\mathbf{x}^{n+1} - \tilde{\mathbf{x}})^T \mathbf{M}(\mathbf{x}^{n+1} - \tilde{\mathbf{x}})$$
subject to
$$\mathbf{C}(\mathbf{x}^{n+1}) = 0$$

Geometric Interpretation

argmin
$$\frac{1}{2}(\mathbf{x}^{n+1} - \tilde{\mathbf{x}})^T \mathbf{M}(\mathbf{x}^{n+1} - \tilde{\mathbf{x}})$$
subject to
$$\mathbf{C}(\mathbf{x}^{n+1}) = 0$$

- Variational form gives a "step and project" interpretation for implicit Euler
- PBD performs approximate projection

Solving

- Implicit time discretization produces a non-linear system of equations
- How do we solve such a system?
- Newton's method

Discrete constrained equations of motion

$$\mathbf{M}(\mathbf{x}^{n+1} - \tilde{\mathbf{x}}) - \Delta t^2 \nabla \mathbf{C}(\mathbf{x}^{n+1})^T \boldsymbol{\lambda} = \mathbf{0}$$
$$\mathbf{C}(\mathbf{x}^{n+1}) = \mathbf{0}$$

Non-Linear System

$$egin{aligned} \mathbf{g}(\mathbf{x}_i,oldsymbol{\lambda}_i) &= \mathbf{0} \ \mathbf{h}(\mathbf{x}_i,oldsymbol{\lambda}_i) &= \mathbf{0} \end{aligned}$$

Approximate Newton Step

First approximation:

- $M = K + O(dt^2)$
- Common Quasi-Newton simplification

Second approximation:

- Assume g = 0
- True for first iteration
- Typically remains small

Full Newton System

$$\begin{bmatrix} \mathbf{K} & \nabla \mathbf{C}^T \\ \nabla \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = -\begin{bmatrix} \mathbf{g}(\mathbf{x}_i, \boldsymbol{\lambda}_i) \\ \mathbf{h}(\mathbf{x}_i, \boldsymbol{\lambda}_i) \end{bmatrix}$$

Approximate System

$$egin{bmatrix} \mathbf{M} &
abla \mathbf{C}^T \
abla \mathbf{C} & \mathbf{0} \end{bmatrix} egin{bmatrix} \Delta \mathbf{x} \ \Delta oldsymbol{\lambda} \end{bmatrix} = - egin{bmatrix} \mathbf{0} \ \mathbf{h}(\mathbf{x}_i, oldsymbol{\lambda}_i) \end{bmatrix}$$

PBD System

(Schur Complement)

$$\left[\nabla \mathbf{C}(\mathbf{x}_i)\mathbf{M}^{-1}\nabla \mathbf{C}(\mathbf{x}_i)^T\right]\Delta \boldsymbol{\lambda} = -\mathbf{C}(\mathbf{x}_i)$$

Variational Interpretation of Approximate Projection

Implicit Euler

argmin
$$\frac{1}{2}(\mathbf{x} - \tilde{\mathbf{x}})^T \mathbf{M}(\mathbf{x} - \tilde{\mathbf{x}})$$
subject to
$$\mathbf{C}(\mathbf{x}) = \mathbf{0}$$

PBD (each iteration)

argmin
$$\frac{1}{2}(\mathbf{x} - \mathbf{x}_i)^T \mathbf{M}(\mathbf{x} - \mathbf{x}_i)$$
subject to
$$\mathbf{C}(\mathbf{x}) = \mathbf{0}$$

Problems

- To arrive at PBD we had to assume infinitely stiff energy potentials
- This means PBD converges to an infinitely stiff solution regardless of stiffness coefficient
- Stiffness dependent on iteration count and time-step
- No concept of total constraint force
- Fully implicit -> severe energy dissipation

Iteration Count Dependent Stiffness

20 ITERATIONS 160 ITERATIONS

PBD Extensions

- Projective Dynamics [Bouaziz et al. 2014]
- XPBD [Macklin et al. 2016]
- Second order PBD

XPBD

- Instead of assuming infinite stiffness, allow constraints to be compliant
- Leads to a modified / regularized non-linear system
- Direct correspondence to engineering stiffness (Young's modulus)
- Compliance is simply inverse stiffness
- [Servin et al. 2006]

Potential

$$E = \frac{1}{2} \mathbf{C}^T (\mathbf{x}^{n+1}) \boldsymbol{\alpha}^{-1} \mathbf{C} (\mathbf{x}^{n+1})$$

Compliance

$$\alpha = \mathbf{k}^{-1}$$

XPBD Newton Step

- Take Schur complement of approximate system with respect to M
- Obtain PBD or Fast
 Projection form
- [Goldenthal et al 2007]

Modified Newton System

$$egin{bmatrix} \mathbf{M} &
abla \mathbf{C}^T \
abla \mathbf{C} & ilde{oldsymbol{lpha}} \end{bmatrix} egin{bmatrix} \Delta \mathbf{x} \ \Delta oldsymbol{\lambda} \end{bmatrix} = -egin{bmatrix} \mathbf{0} \ \mathbf{h}(\mathbf{x}_i, oldsymbol{\lambda}_i) \end{bmatrix}$$

Schur complement

$$\left[\nabla \mathbf{C}(\mathbf{x}_i)\mathbf{M}^{-1}\nabla \mathbf{C}(\mathbf{x}_i)^T + \tilde{\boldsymbol{\alpha}}\right]\Delta\boldsymbol{\lambda} = -\mathbf{C}(\mathbf{x}_i) - \tilde{\boldsymbol{\alpha}}\boldsymbol{\lambda}_i$$

XPBD Gauss-Seidel Update

- View PBD "scaling fator" s
 as incremental Lagrange
 multiplier
- Additional compliance terms
- Must store Lagrange multiplier for each constraint
- PBD solves the infinite stiffness case

PBD

$$s_j = \frac{-C_j(\mathbf{x}_i)}{\nabla C_j \mathbf{M}^{-1} \nabla C_j^T}$$

XPBD

$$\Delta \lambda_j = \frac{-C_j(\mathbf{x}_i) - \tilde{\alpha}_j \lambda_{ij}}{\nabla C_j \mathbf{M}^{-1} \nabla C_j^T + \tilde{\alpha}_j}$$

XPBD Algorithm

- Only two differences from PBD:
 - Lagrange multiplier calculation (include compliance terms)
 - Lagrange multiplier update (store instead of discard)

```
1: predict position \tilde{\mathbf{x}} \leftarrow \mathbf{x}^n + \Delta t \mathbf{v}^n + \Delta t^2 \mathbf{M}^{-1} \mathbf{f}_{ext}(\mathbf{x}^n)
  3: initialize solve \mathbf{x}_0 \leftarrow \tilde{\mathbf{x}}
  4: initialize multipliers \lambda_0 \leftarrow 0
  5: while i < solverIterations do
           for all constraints do
                compute \Delta \lambda
               compute \Delta \mathbf{x}
               update \lambda_{i+1} \Leftarrow \lambda_i + \Delta \lambda
               update \mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \Delta \mathbf{x}
           end for
11:
           i \leftarrow i+1
13: end while
14:
15: update positions \mathbf{x}^{n+1} \leftarrow \mathbf{x}_i
16: update velocities \mathbf{v}^{n+1} \leftarrow \frac{1}{\Delta t} \left( \mathbf{x}^{n+1} - \mathbf{x}^n \right)
```


Our Method

XPBD - FEM

- Generalizes to arbitrary constitutive models
- Treat strain as vector of constraints
- Compliance matrix is inverse stiffness

Elastic Energy Potential

$$E_{tri} = V \frac{1}{2} \boldsymbol{\epsilon}^T \mathbf{K} \boldsymbol{\epsilon}$$

Constraint Vector

$$\mathbf{C}_{tri}(\mathbf{x}) = \boldsymbol{\epsilon}_{tri} = egin{bmatrix} \epsilon_x \ \epsilon_y \ \epsilon_{xy} \end{bmatrix}$$

Compliance Matrix

$$\boldsymbol{\alpha}_{tri} = \mathbf{K}^{-1} = \begin{bmatrix} \lambda + 2\mu & \lambda & 0 \\ \lambda & \lambda + 2\mu & 0 \\ 0 & 0 & 2\mu \end{bmatrix}^{-1}$$

Cantilever Beam

St. Venant-Kirchhoff Triangular FEM

Young's Modulus: E=10^5

Poisson's Ratio: Mu=0.3

Results - XPBD vs Implicit Euler

- Compare solver output to a non-linear Newton method
- Close agreement for primal and dual variables

Second Order Implicit Euler

First order backward Euler (BDF1):

$$\mathbf{v}^{n+1} = \mathbf{v}_n + \Delta t \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}^{n+1})$$
 $\mathbf{x}^{n+1} = \mathbf{x}_n + \Delta t \mathbf{v}^{n+1}$

Second order backward Euler (BDF2)

$$\mathbf{v}^{n+1} = \frac{4}{3}\mathbf{v}^n - \frac{1}{3}\mathbf{v}^{n-1} + \frac{2}{3}\Delta t \mathbf{M}^{-1}\mathbf{f}(\mathbf{x}^{n+1})$$

$$\mathbf{x}^{n+1} = \frac{4}{3}\mathbf{x}^n - \frac{1}{3}\mathbf{x}^{n-1} + \frac{2}{3}\Delta t \mathbf{v}^{n+1}$$

First order prediction:

$$\tilde{\mathbf{x}} = \mathbf{x}^n + \Delta t \mathbf{v}^n + \Delta t^2 \mathbf{M}^{-1} \mathbf{f}_{ext}$$

• First order velocity update:

$$\mathbf{v}^{n+1} = \frac{1}{\Lambda t} \left[\mathbf{x}^{n+1} - \mathbf{x}^n \right]$$

Second order prediction:

$$\tilde{\mathbf{x}} = \frac{4}{3}\mathbf{x}^n - \frac{1}{3}\mathbf{x}^{n-1} + \frac{8}{9}\Delta t\mathbf{v}^n$$
$$-\frac{2}{9}\Delta t\mathbf{v}^{n-1} + \frac{4}{9}\Delta t^2\mathbf{M}^{-1}\mathbf{f}_{ext}$$

Second order velocity update:

$$\mathbf{v}^{n+1} = \frac{1}{\Delta t} \left[\frac{3}{2} \mathbf{x}^{n+1} - 2\mathbf{x}^n + \frac{1}{2} \mathbf{x}^{n-1} \right].$$

See [English 08]

Second Order

First Order

Second Order

First Order

Second Order

- Significantly less damping
- Positions stay closer to constraint manifold
- Requires fewer constraint iterations!
- Non-smooth events (contact) need special handling

Implementation

Parallel PBD

- Gauss-Seidel inherently serial
- Parallel options:
 - Graph coloring methods
 - Jacobi methods
 - Hybrid methods

Graph Coloring Methods

- Break constraint graph into independent sets
- Solve the constraints in a set in parallel
- "Batched" Gauss-Seidel
- Requires synchronization between each set
- Size of sets decreases -> poor utilisation

3 Color Graph

Jacobi Methods

- Process each constraint or particle in parallel
- Sum up contributions on each particle

```
Constraint-centric approach
     Particle-centric approach
              (gather)
                                                    (scatter)
foreach particle (in parallel)
                                     foreach constraint (in parallel)
 foreach constraint
                                       calculate constraint error
                                       foreach particle
   calculate constraint error
                                         update delta (atomically)
   update delta
```


Jacobi Methods

- Problem: system matrix can be indefinite, Jacobi will not converge, e.g.: for redundant constraints (cf. figure)
- Regularized Jacobi iteration via averaging [Bridson et al. 02]
- Sum all constraint deltas together and divide by constraint count for that particle

$$\mathbf{x_i} \leftarrow \mathbf{x_i} + \frac{1}{n_i} \sum_{m_i} \lambda_j \nabla C_j$$

Successive-over relaxation by user parameter omega [0,2]:

$$\mathbf{x_i} \leftarrow \mathbf{x_i} + \frac{\omega}{n_i} \sum_{n_i} \lambda_j \nabla C_j$$

Parallel Methods Comparison

Method	Advantages	Disadvantages
Batched Gauss-Seidel	Good Convergence Very Robust	Graph Coloring Synchronization
Jacobi	Trivial Parallelism	Slow Convergence Less Robust

Hybrid Parallel Methods

- Best of both worlds
- Perform graph-coloring
- Upper limit on number of colors
- Process everything else with Jacobi
- [Fratarcangeli & Pellacini 2015]

Solver Framework

Unified Solver

Everything is a set of particles connected by constraints

- Simplifies collision detection
- Two-way interaction of all object types:
 - Cloth
 - Deformables
 - Fluids
 - Rigid Bodies
- Fits well on the GPU

Particles

```
struct Particle
{
  float pos[3];
  float vel[3];
  float invMass;
  int phase;
};
```

- Velocity stored explicitly
- Phase-ID used to control collision filtering
- Global radius
- SOA layout

Constraints

- Constraint types:
 - Distance (clothing)
 - Shape (rigids, plastics)
 - Density (fluids)
 - Volume (inflatables)
 - Contact (non-penetration)
- Combine constraints
 - Melting, phase-changes
 - Stiff cloth, bent metal

Contact and Friction

Collision Detection Between Particles

- All dynamics represented as particles
- Kinematic objects represented as meshes
- Two types of collision detection:
 - Particle-Particle
 - Particle-Mesh

$$C_{contact} = |\mathbf{x}_i - \mathbf{x}_j| - 2r \ge 0$$

$$C_{contact} = \mathbf{n} \cdot \mathbf{x} - r \ge 0$$

Collision Detection Between Particles

- Particle-Particle
 - Tiled uniform grid
 - Fixed maximum radius
 - Built using cub::DeviceRadixSort
 - Re-order particle data according to cell index to improve memory locality
 - CUDA Particles Sample [Green 07]

Collision Detection Against Shapes

- Particle-Convex
 - 2D hash-grid
 - Built on GPU

- Particle-Triangle Mesh
 - > 3D hash-grid
 - Rasterized in CUDA
 - Lollipop test (CCD)

Convex Collision (MTD)

Triangle Collision (TOI)

Friction

- Friction in PBD traditionally applied using a velocity filter
- Replace with a position-level frictional constraint

$$C_{friction} = |(\mathbf{x} - \mathbf{x}_0) \perp \mathbf{n}|$$

- Approximate Coulomb friction using penetration depth to limit constraint lambda
- Generates convincing particle piling
- [Francu 2017]

Rigid Bodies

Rigid Bodies

- Convert mesh->SDF
- Place particles in interior
- Add shape-matching constraint
- Store SDF dist + gradient on particles

Plastic Deformation

- Detect when deformation exceeds a threshold
- Simply change rest-configuration of particles
- Adjust visual mesh (linear skinning)

Shape matching on the GPU

 Shape matching requires computing centre of mass and the moment matrix for particles:

$$\mathbf{c} = \sum_{i} m_i \mathbf{x_i} / \sum_{i} m_i$$
 $\mathbf{A} = \sum_{i} m_i (\mathbf{x_i} - \mathbf{c}) (\overline{\mathbf{x}_i} - \overline{\mathbf{c}})^{\mathrm{T}}$

- Large summations, not immediately parallel friendly
- Optimized using two parallel cub::BlockReduce calls
- O(N) -> O(log N) (18ms -> 0.6ms)
- 1 block per-rigid shape (64 threads, heuristic, irregular workload problem)
- Polar decomposition still single threaded

Robust and Simple Polar Decomposition

- Shape matching requires a polar decomposition
- Can be done through SVD / Eigenvalue decomposition
- Complex code, ill-posed for indefinite systems
- Simple algorithm given in [Müller et al 2016]
- Robustly handles inversion through temporal coherence

```
void extractRotation(const Matrix3d &A, Quaterniond &q,
     const unsigned int maxIter)
      (unsigned int iter = 0; iter < maxIter; iter++)
      Matrix3d R = q.matrix();
      Vector3d omega = (R.col(0).cross(A.col(0)) + R.col
           (1).cross(A.col(1)) + R.col(2).cross(A.col(2))
           ) * (1.0 / fabs(R.col(0).dot(A.col(0)) + R.col
           (1).dot(A.col(1)) + R.col(2).dot(A.col(2))) +
           1.0e-9);
      double w = omega.norm();
      if (w < 1.0e-9)
         break;
      q = Quaterniond(AngleAxisd(w, (1.0/w)*omega)) * q;
      q.normalize();
```


Scene

Soft Octopus

Soft Teapot

Soft Rope

Soft Cloth

Soft Bowl

Soft Rod

Soft Armadillo

Soft Bunny

Mixed Pile

Frame: 0 Particle Count: 4389 Diffuse Count: 0 Rigid Count: 270 Spring Count: 0 Num Substeps: 2 Num Iterations: 4 CUDA Device: GeForce GTX TITAN X

Generalised Coordinate Rigid Bodies

- Particle: P(x) = x
- Rigid body: $P(x, \vartheta) = x + R(\vartheta)P_{local}$
- ullet Rotation is parameterized by exponential map $\,artheta$
- Example, ball joint:

$$C(P_1, P_2) = P_1 - P_2 = 0$$

• [Deul et al. 2014]

Generalized Rigid Body Constraint Gradients

- Split gradient into a constraint part and connector part
- Particle:

$$\nabla \mathbf{C} = \underbrace{\frac{\partial \mathbf{C}(\mathbf{P})}{\partial \mathbf{P}}}_{\text{constraint specific part}} \cdot \underbrace{\frac{\partial \mathbf{P}}{\partial \mathbf{x}}}_{\text{connector specific part}} = \underbrace{\frac{\partial \mathbf{C}(\mathbf{P})}{\partial \mathbf{P}}}_{\text{connector specific part}}$$

Rigid Body:

$$abla \mathbf{C} = \underbrace{\frac{\partial \mathbf{C}(\mathbf{P})}{\partial \mathbf{P}}}_{ ext{constraint}} \cdot \underbrace{\left(\frac{\partial \mathbf{P}}{\partial \mathbf{X}} \quad \frac{\partial \mathbf{P}}{\partial \boldsymbol{\vartheta}}\right)^T}_{ ext{connector specific part}}$$

Generalised Position-Based Solver

• Linearization of constraint (rigid bodies):

$$\mathbf{C}(\mathbf{x} + \Delta \mathbf{x}, \boldsymbol{\varphi} + \Delta \boldsymbol{\varphi}) \approx \mathbf{C}(\mathbf{x}, \boldsymbol{\varphi}) + \nabla \mathbf{C}(\Delta \mathbf{x}^T, \Delta \boldsymbol{\varphi}^T)$$

Computation of Lagrange multiplier:

$$[
abla \mathbf{C}\mathbf{M}^{-1}
abla \mathbf{C}^T]\Delta oldsymbol{\lambda} = -\mathbf{C}(\mathbf{x}_i, oldsymbol{arphi}_i)$$

Correction vectors:

$$[\Delta \mathbf{x}^T, \Delta oldsymbol{arphi}^T] = \mathbf{M}^{-1}
abla \mathbf{C}^T oldsymbol{\lambda}$$

Fluids

Density Constraint

$$C_{density} = \frac{\rho_i}{\rho_0} - 1 \le 0$$

- Density via SPH kernels
- Unilateral constraint
- Cohesion from [Akinci13]

Surface Tension Constraint

- Adapted surface tension model of [Akinci et al. 2013] to PBD
- Attempts to minimize curvature

Two-Way Rigid Fluid Coupling

- Mostly automatic
- Include all particles in fluid density estimation
- Treat fluid->solid particle interactions as if both particles solid

Cloth

- Graph of distance + tether constraints
- Self-collision / inter-collision automatically handled

Cloth - Forces

- Basic aerodynamic model
- Treat each triangle as a thin airfoil to generate lift + drag
- Flexible enough to model paper planes

Ropes

- Build ropes from distance + bending constraints
- Fit Catmull-Rom spline to points
- Torsion possible [Umetani 14]

Examples

Limitations and Future Work

- Representing smooth surfaces problematic
- Want parallel and robust collision of simplices
- Hierarchical representation (multi-scale particles)
- Convergence for parallel solver / accelerated methods [Mazhar 2015]

Resources

- PBD available as an open source library:
 https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
- Already supports many constraints: point-point, point-edge, point-triangle and edge-edge distance constraints, dihedral bending constraint, isometric bending, volume constraint, shape matching, FEM-based PBD (2D & 3D), strain-based dynamics (2D & 3D).
- Simple interface: just one class with static methods.
- MIT License
- Demos for usage

Conclusion

- Position-Based Methods are:
 - Fast, stable and simple to implement,
 - Provide a high level of control,
 - Can simulate deformable solids (1D, 2D, 3D), multi-body systems, fluids and granular materials,
 - Can be viewed as an approximation of implicit methods

Questions?

References

- English, Elliot, and Robert Bridson. "Animating developable surfaces using nonconforming elements." ACM Transactions on Graphics (TOG). Vol. 27. No. 3. ACM, 2008.
- Goldenthal, Rony, et al. "Efficient simulation of inextensible cloth." ACM Transactions on Graphics (TOG) 26.3 (2007): 49.
- Bouaziz, Sofien, et al. "Projective dynamics: fusing constraint projections for fast simulation." ACM Transactions on Graphics (TOG) 33.4 (2014): 154.
- Bridson, Robert, Ronald Fedkiw, and John Anderson. "Robust treatment of collisions, contact and friction for cloth animation." ACM Transactions on Graphics (ToG). Vol. 21.
 No. 3. ACM, 2002.
- Stam, Jos. "Nucleus: Towards a unified dynamics solver for computer graphics."
 Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics' 09. 11th IEEE International Conference on. IEEE, 2009.
- Green, Simon. "Cuda particles." nVidia Whitepaper 2.3.2 (2008): 1.
- Guendelman, Eran, Robert Bridson, and Ronald Fedkiw. "Nonconvex rigid bodies with stacking." ACM Transactions on Graphics (TOG). Vol. 22. No. 3. ACM, 2003.
- Servin, M., Lacoursiere, C., & Melin, N. (2006, November). Interactive simulation of elastic deformable materials. In SIGRAD 2006. The Annual SIGRAD Conference; Special Theme: Computer Games (No. 019). Linköping University Electronic Press.

- Provot, Xavier. "Deformation constraints in a mass-spring model to describe rigid cloth behaviour." Graphics interface. Canadian Information Processing Society, 1995.
- Fratarcangeli, M., and F. Pellacini. "Scalable Partitioning for Parallel Position Based Dynamics." EUROGRAPHICS. Vol. 34. No. 2. 2015.
- Liu, Tiantian, et al. "Fast simulation of mass-spring systems." ACM Transactions on Graphics (TOG) 32.6 (2013): 214.
- Akinci, Nadir, Gizem Akinci, and Matthias Teschner. "Versatile surface tension and adhesion for SPH fluids." ACM Transactions on Graphics (TOG) 32.6 (2013): 182.
- Ryckaert, Jean-Paul, Giovanni Ciccotti, and Herman JC Berendsen. "Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes." Journal of Computational Physics 23.3 (1977): 327-341.
- Umetani, Nobuyuki, Ryan Schmidt, and Jos Stam. "Position-based elastic rods." ACM SIGGRAPH 2014 Talks. ACM, 2014.
- Müller, M., Bender, J., Chentanez, N., & Macklin, M. (2016, October). A robust method to extract the rotational part of deformations. In Proceedings of the 9th International Conference on Motion in Games (pp. 55-60). ACM.
- Bender, Jan, et al. "Position-based simulation of continuous materials." Computers & Graphics 44 (2014): 1-10.
- Unified Simulation of Rigid and Flexible Bodies Using Position Based Dynamics -VRIPHYS 2017

