Position-Based Dynamics

Analysis and Implementation

Miles Macklin

<A NVIDIA.

<ANVIDIA.

Analysis

Position-Based Dynamics

* Very stable
* Highly damped

* Example

<A NVIDIA.

Continuous Equations of Motion

e Newton’s second law

e Will consider forces which we can derive

from an energy potential E(x) -
* Qur path: start with implicit Euler and

transform it into PBD

* Why implicit Euler? Also highly stable,
damped.

<ANVIDIA.

Implicit Euler Integration

Implicit Euler:

Equivalent to:

Forces evaluated at end of the time-step

Implicit, position-level, time-discretization of Newton’s equations

<ANVIDIA.

Variational Implicit Euler

* Discrete equations of motion

* Are the first order optimality
conditions for a non-linear
minimization

[Liu et al. 2013]

x=2x" —x"" '+ M If.,

— x" + Atv" + M f_,

<ANVIDIA.

Variational Implicit Euler

* |In the limit of infinite
stiffness we obtain a
constrained minimization

E — o0

<ANVIDIA.

Geometric Interpretation

* Variational form gives a “step

and project” interpretation for
implicit Euler

* PBD performs approximate
projection

<A NVIDIA.

Solving

Discrete constrained equations of motion

* Implicit time discretization
produces a non-linear
system of equations

e How do we solve such a

system? |
Non-Linear System

e Newton’s method

<ANVIDIA.

Approximate Newton Step

First approximation: Full Newton System

e M=K+ O(dt"2)

e Common Quasi-Newton

simplification Approximate System

Second approximation:

* Assumeg=_0

e True for first iteration PBD System (ehur Gomplement

<ANVIDIA.

Variational Interpretation of Approximate Projection

Implicit Euler

PBD (each iteration)

<A NVIDIA.

Problems

To arrive at PBD we had to assume infinitely stiff energy potentials

This means PBD converges to an infinitely stiff solution regardless
of stiffness coefticient

Stiffness dependent on iteration count and time-step
No concept of total constraint force

Fully implicit -> severe energy dissipation

<ANVIDIA.

Iteration Count Dependent Stiffness

20 ITERATIONS 160 ITERATIONS

<A NVIDIA.

PBD Extensions

* Projective Dynamics [Bouaziz et al. 2014]

o XPBD [Macklin et al. 2016]
e Second order PBD

<ANVIDIA.

XPBD

* Instead of assuming infinite stiffness,
allow constraints to be compliant

* Leads to a modified / regularized
non-linear system

* Direct correspondence to engineering
stiffness (Young’s modulus)

* Compliance is simply inverse stiffness

* [Servin et al. 2006]

Potential

Compliance

<ANVIDIA.

XPBD Newton Step

Modified Newton System

* Take Schur complement
of approximate system
with respect to M

* Obtain PBD or Fast l
Projection form Schur complement

<ANVIDIA.

* View PBD "“scaling fator” s
as incremental Lagrange
multiplier

* Additional compliance terms

* Must store Lagrange
multiplier for each constraint

e PBD solves the infinite
stiffness case

XPBD Gauss-Seidel Update

PBD

XPBD

<ANVIDIA.

XPBD Algorithm

* Only two differences from
PBD:

» Lagrange multiplier
calculation (include
compliance terms)

» Lagrange multiplier update
(store instead of discard)

<ANVIDIA.

Our Method

20 iterations 40 iterations 80 iterations 160 iterations

XPBD - FEM

* Generalizes to arbitrary
constitutive models

e Treat strain as vector of
constraints

* Compliance matrix is inverse
stiffness

Elastic Energy Potential

Constraint Vector

Compliance Matrix

<ANVIDIA.

Cantilever Beam
St.Venant-Kirchhoff Triangular FEM

Young's Modulus: E=1075
Poisson's Ratio: Mu=0.3

Results - XPBD vs Implicit Euler

— Newton
— XPBD 50
— XPBD 100
— XPBD 1000

* Compare solver output to a
non-linear Newton method =

* Close agreement for primal
and dual variables

500

Force (N)

4501

400}

| | | |
75 80 85 90 95 100
Frame

<A NVIDIA.

Second Order Implicit Euler

* First order backward Euler (BDF1):

e Second order backward Euler (BDF2)

<ANVIDIA.

Second Order PBD

* First order prediction: * Second order prediction:

* First order velocity update:

— e Second order velocity update:

* See [English 08]

<ANVIDIA.

Second Order PBD

First Order Second Order

<A NVIDIA.

Second Order PBD

First Order Second Order

<ANVIDIA.

Second Order PBD

First Order Second Order

<ANVIDIA.

Second Order PBD

Signiticantly less damping
Positions stay closer to constraint manifold
Requires fewer constraint iterations!

Non-smooth events (contact) need special handling

<ANVIDIA.

Implementation

Parallel PBD

* Gauss-Seidel inherently serial

* Parallel options:
» Graph coloring methods
» Jacobi methods

» Hybrid methods

<ANVIDIA.

Graph Coloring Methods

* Break constraint graph into independent sets
* Solve the constraints in a set in parallel

* "Batched” Gauss-Seidel

* Requires synchronization between each set

* Size of sets decreases -> poor utilisation

3 Color Graph

<ANVIDIA.

Jacobi Methods

* Process each constraint or particle in parallel

* Sum up contributions on each particle

Particle-centric approach
(gather)

Constraint-centric approach
(scatter)

foreach particle (in parallel)

{

foreach constraint

{

calculate constraint error
update delta

}
}

foreach constraint (in parallel)
{
calculate constraint error
foreach particle

{

update delta (atomically)
}

}

<ANVIDIA.

Jacobi Methods

* Problem: system matrix can be indefinite, Jacobi will not ‘
converge, e.g.: for redundant constraints (cf. figure) '

* Regularized Jacobi iteration via averaging [Bridson et al. 02]

e Sum all constraint deltas together and divide by constraint
count for that particle

*
L 4
L 4
L 4
L 4
L 4
L 4
.
L 4
L 4
L 4
L 4
L 4

1
Xi < X; E)\jVCj
g
T
* Successive-over relaxation by user parameter omega [0,2]:

oy,
X — X; E)\jVCj
T ; —

<ANVIDIA.

Parallel Methods Comparison

Batched Good Convergence | Graph Coloring
Gauss-Seidel Very Robust Synchronization

. . Slow Convergence
Jacobi Trivial Parallelism 3

L ess Robust

<ANVIDIA.

Hybrid Parallel Methods

Best of both worlds

Perform graph-coloring

Upper limit on number of colors
Process everything else with Jacobi

[Fratarcangeli & Pellacini 2015]

<ANVIDIA.

Solver Framework

<ANVIDIA.

Unified Solver

* Simplifies collision detection

* Two-way interaction of all object types:

» Cloth
» Deformables
» Fluids
» Rigid Bodies

e Fits well on the GPU

<ANVIDIA.

Particles

struct Particle
{
float pos[3];
float vel[3];
float 1nvMass;
int phase;

&

* Velocity stored explicitly

e Phase-ID used to control collision
filtering

* Global radius
* SOA layout

<ANVIDIA.

Constraints

* Constraint types:
» Distance (clothing)
» Shape (rigids, plastics)
» Density (fluids)
» Volume (inflatables)

» Contact (non-penetration)

* Combine constraints
» Melting, phase-changes

» Stiff cloth, bent metal

<ANVIDIA.

Contact and Friction

<ANVIDIA.

Collision Detection Between Particles

* All dynamics represented as particles “

* Kinematic objects represented as
meshes

Ccantact — |X7Z — le —2r > (
* Two types of collision detection:

» Particle-Particle

» Particle-Mesh

Ccontact:n'x_rzo

<ANVIDIA.

Collision Detection Between Particles

e Particle-Particle
» Tiled uniform grid
» Fixed maximum radius

» Built using cub::DeviceRadixSort

» Re-order particle data according to cell
index to improve memory locality

» CUDA Particles Sample [Green 07]

<ANVIDIA.

Collision Detection Against Shapes

e Particle-Convex
» 2D hash-grid
» Built on GPU

* Particle-Triangle Mesh
» 3D hash-grid
» Rasterized in CUDA
» Lollipop test (CCD)

Convex Collision (MTD)

Triangle Collision (TOI)

<ANVIDIA.

Friction

* Friction in PBD traditionally applied using a velocity

filter

* Replace with a position-level frictional constraint

CfrictiOn

* Approximate Coulomb friction using penetration

(X —Xp) L n

depth to limit constraint lambda

* Generates convincing particle piling

e [Francu 2017/]

<ANVIDIA.

Rigid Bodies

Rigid Bodies

* Convert mesh->SDF Rest Contiguration

* Place particles in interior

* Add shape-matching constraint l

' ' Def d Stat
e Store SDF dist + gradient on etormead State

particles

Best Rigid
Rotation/
Translation

<A NVIDIA.

Plastic Deformation

e Detect when deformation exceeds a

threshold

* Simply change rest-configuration of
particles

e Adjust visual mesh (linear skinning)

<ANVIDIA.

Shape matching on the GPU

Shape matching requires computing centre of mass and the moment matrix for
particles:

c:ZmiXi/Zmi A:Zmi(xi_c)(ii_é)rr

Large summations, not immediately parallel friendly

Optimized using two parallel cub::BlockReduce calls

O(N) -> O(logN) (18ms -> 0.6ms)

1 block per-rigid shape (64 threads, heuristic, irregular workload problem)

Polar decomposition still single threaded

<ANVIDIA.

Robust and Simple Polar Decomposition

¢ Shape matChmg l’eqU"‘eS d POlar void extractRotation(const Matrix3d &A, Quaterniond &q,

decomposition const unsigned int maxIter)
for (unsigned int iter = 0; iter < maxIter; iter++)

{

e Can be done through SVD / Matrix3d R - g.matrix();
Eigenva|ue decomposition Vector3d omega = (R.col(@).cross(A.col(9)) + R.col
(1).cross(A.col(1)) + R.col(2).cross(A.col(2))
. . ..) * (1.0 / fabs(R.col(0).dot(A.col(@)) + R.col
* Complex code, ill-posed for indefinite (1).dot(A.col(1)) + R.col(2).dot(A.col(2))) +
systems 10e=0);
double w = omega.norm();
. . . . g if (w < 1.0e-9)
e Simple algorithm given in [Muller et al break;
2016] q = Quaterniond(AngleAxisd(w, (1.0/w)+omega)) * q;
q.normalize();
* Robustly handles inversion through }

temporal coherence

<ANVIDIA.

Frame: 0

Particle Count: 4389

Diffuse Count: 0

Rigid Count: 270

Spring Count: 0

Num Substeps: 2

Num Iterations: 4

CUDA Device: GeForce GTX TITAN X

Scene

Soft Octopus
Soft Teapot
Soft Rope

Soft Cloth
Soft Bowl

Soft Rod

Soft Armadillo

Soft Bunny
Mixed Pile

Options

Global
Emit particles

® Pause

Wireframe
Draw Points
Draw Fluid
® Draw Mesh
Draw Basis

Draw Springs

Reset Scene

Num Substeps

Num Iterations

(Gravitu X

Generalised Coordinate Rigid Bodies

e Particle: P(x) =x

* Rigid body: P(x,9) = x + R(9)Piocal

* Rotation is parameterized by exponential map 9 Pl;

* Example, ball joint:

C(P,,P;) =P, —P,=0

* [Deul et al. 2014]

<ANVIDIA.

Generalized Rigid Body Constraint Gradients

* Split gradient into a constraint part and connector part

e Particle:
oo 9C®) 0P 9C(P)
0P x 0P
~— ~~
e specific part
* Rigid Body:

ve — 0C(P) .(i i)T

- OP X Y
S N ——

constraint connector
specific part specific part

<ANVIDIA.

Generalised Position-Based Solver

* Linearization of constraint (rigid bodies):

C(x + Ax, ¢ + Ap) =~ C(x,¢) + VC(Ax", Ap™)

* Computation of Lagrange multiplier:

VCM 'VCTAX = —C(x;, ;)

e Correction vectors:
Ax? A’ =M"'VC' A

<ANVIDIA.

Fluids

<ANVIDIA.

Density Constraint

Cdensity — o 1 <0

L0

* Density via SPH kernels

e Unilateral constraint
* Cohesion from [Akinci13]

<ANVIDIA.

Surface Tension Constraint

* Adapted surface tension model of [Akinci et al. 2013] to PBD

* Attempts to minimize curvature

Ctensian — X_ij -1 = 605(9)

AW

AT S LR AL ERE R AL)
LLITEL LS ALY REL)
AR ASTAARS & »
DAL ADE 5 s
Afabhaahata asnan
S AL AL T ELRLAENENYEELELE)
Thatantantassasns
AL EL L IR LEYYLLYYL]
SaehaathBhantd® »
. A afatfhaganans
AL LI L E AR LY X)
L LI L LYY L)

NN Tastat»
A8 Saaasns a»
LA AL ERLLTTIEYE R R

N RARATAAAAARAS
BA%A% SAafeaans.
LA L B LA RN T L L LEY
a sasipasnnnsy
e BN saaes Ay
SaAfad aan Sans
(A AL I ELL LT LY
Aafaasshtassas
OQOOOOQﬂq.Q.I.Q
A% A% ARy
" BAATASRAAN A4
B RS 2NN "aan
AANSSNASE Saans
Saastashnataan
- - QCOQOhO.Q. -
R LR ER AL L LE B

Sasee Hansamans
(I FT XL R LY YN)

ah ads Sahh
"aetsva'snnesaans
(I AL AT S LAl T L
NEeete 5 Saanths
snatgavetanes

LY R L X S RN L N

B B4, s e ot
UV vwLsSV e

Two-Way Rigid Fluid Coupling

* Mostly automatic

* Include all particles in fluid
density estimation

* Treat fluid->solid particle
interactions as if both particles

solid

<ANVIDIA.

Cloth

* Graph of distance + tether constraints

e Self-collision / inter-collision automatically handled

..-s
"™
e ~ STE T -~
Gaant SRR an
©an A
S

Dbl LN AL 3

‘ss‘s~‘—~~"

gestenss

e B
- Sewwaea
"“--~-~

<ANVIDIA.

Cloth - Forces

* Basic aerodynamic model
* Treat each triangle as a thin airfoil to generate lift + drag

* Flexible enough to model paper planes

<ANVIDIA.

Ropes
* Build ropes from distance + bending
constraints

* Fit Catmull-Rom spline to points

* Torsion possible [Umetani 14]

g > -
R W 1

.
N

<ANVIDIA.

Examples

<ANVIDIA.

T W Y

Limitations and Future Work

* Representing smooth surfaces problematic
* Want parallel and robust collision of simplices
* Hierarchical representation (multi-scale particles)

* Convergence for parallel solver / accelerated methods [Mazhar 2015]

<ANVIDIA.

Resources

* PBD available as an open source library:
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

* Already supports many constraints: point-point, point-edge, point-
triangle and edge-edge distance constraints, dihedral bending

constraint, isometric bending, volume constraint, shape matching, FEM-
based PBD (2D & 3D), strain-based dynamics (2D & 3D).

e Simple interface: just one class with static methods.

e MIT License

* Demos for usage

<ANVIDIA.

https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

Conclusion

* Position-Based Methods are:
» Fast, stable and simple to implement,
» Provide a high level of control,

» Can simulate deformable solids (1D, 2D,
3D), multi-body systems, fluids and
granular materials,

» Can be viewed as an approximation of
implicit methods

<A NVIDIA.

Questions?

<ANVIDIA.

References

e English, Elliot, and Robert Bridson. "Animating developable surfaces using
nonconforming elements.”" ACM Transactions on Graphics (TOG). Vol. 27. No. 3. ACM,
2008.

e Goldenthal, Rony, et al. "Efficient simulation of inextensible cloth.”" ACM Transactions
on Graphics (TOG) 26.3 (2007): 49.

* Bouaziz, Sofien, et al. "Projective dynamics: fusing constraint projections for fast
simulation." ACM Transactions on Graphics (TOG) 33.4 (2014): 154.

* Bridson, Robert, Ronald Fedkiw, and John Anderson. "Robust treatment of collisions,
contact and friction for cloth animation." ACM Transactions on Graphics (ToG). Vol. 21.
No. 3. ACM, 2002.

e Stam, Jos. "Nucleus: Towards a unified dynamics solver for computer graphics."
Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics' 09. 11th IEEE
International Conference on. IEEE, 2009.

* Green, Simon. "Cuda particles." nVidia Whitepaper 2.3.2 (2008): 1.

* Guendelman, Eran, Robert Bridson, and Ronald Fedkiw. "Nonconvex rigid bodies with
stacking.”" ACM Transactions on Graphics (TOG). Vol. 22. No. 3. ACM, 2003.

e Servin, M., Lacoursiere, C., & Melin, N. (2006, November). Interactive simulation of
elastic deformable materials. In SIGRAD 2006. The Annual SIGRAD Conference; Special
Theme: Computer Games (No. 019). Linkoping University Electronic Press.

Provot, Xavier. "Deformation constraints in a mass-spring model to describe rigid cloth
behaviour." Graphics interface. Canadian Information Processing Society, 1995.

Fratarcangeli, M., and F. Pellacini. "Scalable Partitioning for Parallel Position Based
Dynamics." EUROGRAPHICS. Vol. 34. No. 2. 2015.

Liu, Tiantian, et al. "Fast simulation of mass-spring systems.” ACM Transactions on
Graphics (TOG) 32.6 (2013): 214.

Akinci, Nadir, Gizem Akinci, and Matthias Teschner. "Versatile surface tension and
adhesion for SPH fluids." ACM Transactions on Graphics (TOG) 32.6 (2013): 182.

Ryckaert, Jean-Paul, Giovanni Ciccotti, and Herman JC Berendsen. "Numerical
integration of the cartesian equations of motion of a system with constraints: molecular
dynamics of n-alkanes." Journal of Computational Physics 23.3 (1977): 327-341.

Umetani, Nobuyuki, Ryan Schmidt, and Jos Stam. "Position-based elastic rods." ACM
SIGGRAPH 2014 Talks. ACM, 2014.

Muller, M., Bender, J., Chentanez, N., & Macklin, M. (2016, October). A robust method

to extract the rotational part of deformations. In Proceedings of the 9th International
Conference on Motion in Games (pp. 55-60). ACM.

Bender, Jan, et al. "Position-based simulation of continuous materials." Computers &
Graphics 44 (2014): 1-10.

Unified Simulation of Rigid and Flexible Bodies Using Position Based Dynamics -
VRIPHYS 2017

<ANVIDIA.

