
Position-Based Dynamics
Analysis and Implementation

Miles Macklin

Analysis

Position-Based Dynamics

• Very stable

• Highly damped

• Example

Continuous Equations of Motion

• Newton’s second law

• Will consider forces which we can derive
from an energy potential E(x)

• Our path: start with implicit Euler and
transform it into PBD

• Why implicit Euler? Also highly stable,
damped.

Mẍ = f(x)

• Implicit Euler: 
 
 

• Equivalent to: 
 
 

• Forces evaluated at end of the time-step

• Implicit, position-level, time-discretization of Newton’s equations

Implicit Euler Integration

v

n+1 = vn +�tM�1
f(xn+1)

x

n+1 = xn +�tvn+1

M

✓
x

n+1 � 2xn + x

n�1

�t2

◆
= f(xn+1)

• Discrete equations of motion

• Are the first order optimality
conditions for a non-linear
minimization

• [Goldenthal et al. 2007] 
[Liu et al. 2013]

Variational Implicit Euler

M(xn+1 � 2xn + x

n�1) = �t2f(xn+1)

x̃ = 2xn � x

n�1 +M

�1
f

ext

= x

n +�tvn +M

�1
f

ext

argmin 1

2
(xn+1 � x̃)TM(xn+1 � x̃)��t

2
E(xn+1)

• In the limit of infinite
stiffness we obtain a
constrained minimization 

Variational Implicit Euler

E ! 1

argmin

subject to

1

2
(xn+1 � x̃)TM(xn+1 � x̃)

C(xn+1) = 0

argmin
1

2
(xn+1 � x̃)TM(xn+1 � x̃)��t

2
E(xn+1)

x̃

x

⇤

C(x) = 0

x1

x2

x

n

Geometric Interpretation

• Variational form gives a “step
and project” interpretation for
implicit Euler

• PBD performs approximate
projection

argmin

subject to

1

2
(xn+1 � x̃)TM(xn+1 � x̃)

C(xn+1) = 0

Solving

• Implicit time discretization
produces a non-linear
system of equations

• How do we solve such a
system?

• Newton’s method
g(xi,�i) = 0

h(xi,�i) = 0

M(xn+1 � x̃)��t2rC(xn+1)T� = 0

C(xn+1) = 0

Discrete constrained equations of motion

Non-Linear System

Approximate Newton Step

First approximation: 

• M = K + O(dt^2)

• Common Quasi-Newton
simplification  

Second approximation:  

• Assume g = 0

• True for first iteration

• Typically remains small

Full Newton System

Approximate System


K rC

T

rC 0

� 
�x

��

�
= �


g(xi,�i)
h(xi,�i)

�


M rC

T

rC 0

� 
�x

��

�
= �


0

h(xi,�i)

�

⇥
rC(xi)M

�1rC(xi)
T
⇤
�� = �C(xi)

PBD System
(Schur Complement)

Variational Interpretation of Approximate Projection

Implicit Euler

PBD (each iteration)

x̃

x

⇤

C(x) = 0

x1

x2

x

n

1

2
(x� xi)

T
M(x� xi)

C(x) = 0

1

2
(x� x̃)TM(x� x̃)

C(x) = 0

argmin

subject to

argmin

subject to

Problems

• To arrive at PBD we had to assume infinitely stiff energy potentials

• This means PBD converges to an infinitely stiff solution regardless
of stiffness coefficient

• Stiffness dependent on iteration count and time-step

• No concept of total constraint force

• Fully implicit -> severe energy dissipation

Iteration Count Dependent Stiffness

160 ITERATIONS20 ITERATIONS

PBD Extensions

• Projective Dynamics [Bouaziz et al. 2014]

• XPBD [Macklin et al. 2016]

• Second order PBD

XPBD

• Instead of assuming infinite stiffness,
allow constraints to be compliant

• Leads to a modified / regularized
non-linear system

• Direct correspondence to engineering
stiffness (Young’s modulus)

• Compliance is simply inverse stiffness

• [Servin et al. 2006]

↵ = k�1

Potential

Compliance

E =
1

2
C

T (xn+1)↵�1
C(xn+1)

XPBD Newton Step

• Take Schur complement
of approximate system
with respect to M

• Obtain PBD or Fast
Projection form

• [Goldenthal et al 2007]

Schur complement

Modified Newton System

M rC

T

rC ↵̃

� 
�x

��

�
= �


0

h(xi,�i)

�

⇥
rC(xi)M

�1rC(xi)
T + ↵̃

⇤
�� = �C(xi)� ↵̃�i

XPBD Gauss-Seidel Update

• View PBD “scaling fator” s
as incremental Lagrange
multiplier

• Additional compliance terms

• Must store Lagrange
multiplier for each constraint

• PBD solves the infinite
stiffness case

PBD

XPBD

sj =
�Cj(xi)

rCjM
�1rCT

j

��j =
�Cj(xi)� ↵̃j�ij

rCjM
�1rCT

j + ↵̃j

XPBD Algorithm

• Only two differences from
PBD:
‣ Lagrange multiplier

calculation (include
compliance terms)

‣ Lagrange multiplier update
(store instead of discard)

RESULTS

• Contact / friction

XPBD - FEM

• Generalizes to arbitrary
constitutive models

• Treat strain as vector of
constraints

• Compliance matrix is inverse
stiffness

C

tri

(x) = ✏
tri

=

2

4
✏
x

✏
y

✏
xy

3

5

↵tri = K�1 =

2

4
�+ 2µ � 0

� �+ 2µ 0
0 0 2µ

3

5
�1

Etri = V
1

2
✏TK✏

Compliance Matrix

Constraint Vector

Elastic Energy Potential

RESULTS

• Contact / friction

Results - XPBD vs Implicit Euler

• Compare solver output to a
non-linear Newton method

• Close agreement for primal
and dual variables

• First order backward Euler (BDF1):  
 
 
 

• Second order backward Euler (BDF2)

Second Order Implicit Euler

v

n+1 = vn +�tM�1
f(xn+1)

x

n+1 = xn +�tvn+1

v

n+1 =
4

3
v

n � 1

3
v

n�1 +
2

3
�tM�1

f(xn+1)

x

n+1 =
4

3
x

n � 1

3
x

n�1 +
2

3
�tvn+1

• First order velocity update:

• Second order velocity update:

Second Order PBD

v

n+1 =
1

�t


3

2
x

n+1 � 2xn +
1

2
x

n�1

�
.

x̃ = x

n +�tvn +�t2M�1
f

ext

v

n+1 =
1

�t

⇥
x

n+1 � x

n
⇤

x̃ =
4

3
x

n � 1

3
x

n�1 +
8

9
�tvn

� 2

9
�tvn�1 +

4

9
�t2M�1

f

ext

• First order prediction: • Second order prediction:

• See [English 08]

Second Order PBD

First Order Second Order

Second Order PBD

First Order Second Order

Second Order PBD

First Order Second Order

Second Order PBD

• Significantly less damping

• Positions stay closer to constraint manifold

• Requires fewer constraint iterations!

• Non-smooth events (contact) need special handling

Implementation

Parallel PBD

• Gauss-Seidel inherently serial

• Parallel options:
‣ Graph coloring methods
‣ Jacobi methods
‣ Hybrid methods

• Break constraint graph into independent sets

• Solve the constraints in a set in parallel

• “Batched” Gauss-Seidel

• Requires synchronization between each set

• Size of sets decreases -> poor utilisation

Graph Coloring Methods

3 Color Graph

Jacobi Methods
• Process each constraint or particle in parallel

• Sum up contributions on each particle

Particle-centric approach
(gather)

Constraint-centric approach
(scatter)

foreach particle (in parallel)
{
foreach constraint
{
calculate constraint error
update delta

}
}

foreach constraint (in parallel)
{
calculate constraint error
foreach particle
{
update delta (atomically)

}
}

• Problem: system matrix can be indefinite, Jacobi will not
converge, e.g.: for redundant constraints (cf. figure)

• Regularized Jacobi iteration via averaging [Bridson et al. 02]

• Sum all constraint deltas together and divide by constraint
count for that particle 
 

• Successive-over relaxation by user parameter omega [0,2]:

Jacobi Methods

xi xi +
1

ni

X

ni

�jrCj

xi xi +
!

ni

X

ni

�jrCj

Parallel Methods Comparison

Method Advantages Disadvantages

Batched
Gauss-Seidel

Good Convergence
Very Robust

Graph Coloring
Synchronization

Jacobi Trivial Parallelism
Slow Convergence
Less Robust

Hybrid Parallel Methods

• Best of both worlds

• Perform graph-coloring

• Upper limit on number of colors

• Process everything else with Jacobi

• [Fratarcangeli & Pellacini 2015]

Solver Framework

• Simplifies collision detection

• Two-way interaction of all object types: 

‣ Cloth
‣ Deformables
‣ Fluids
‣ Rigid Bodies

• Fits well on the GPU

Unified Solver

Everything is a set of particles
connected by constraints

Examples

• Show some neat examples of what we can do with Flex that would
not be possible in other frameworks

• Smoke / Cloth

• Water / Buoyancy

Particles

• Velocity stored explicitly

• Phase-ID used to control collision
filtering

• Global radius

• SOA layout

struct Particle
{
float pos[3];
float vel[3];
float invMass;
int phase;

};

Constraints

• Constraint types:
‣ Distance (clothing)
‣ Shape (rigids, plastics)
‣ Density (fluids)
‣ Volume (inflatables)
‣ Contact (non-penetration)

• Combine constraints
‣ Melting, phase-changes
‣ Stiff cloth, bent metal

Contact and Friction

Collision Detection Between Particles

• All dynamics represented as particles

• Kinematic objects represented as
meshes

• Two types of collision detection:
‣ Particle-Particle
‣ Particle-Mesh

C
contact

= n · x� r � 0

C
contact

= |x
i

� x

j

|� 2r � 0

Collision Detection Between Particles

• Particle-Particle
‣ Tiled uniform grid
‣ Fixed maximum radius
‣ Built using cub::DeviceRadixSort
‣ Re-order particle data according to cell

index to improve memory locality
‣ CUDA Particles Sample [Green 07] r

Collision Detection Against Shapes
• Particle-Convex
‣ 2D hash-grid
‣ Built on GPU 

• Particle-Triangle Mesh
‣ 3D hash-grid
‣ Rasterized in CUDA
‣ Lollipop test (CCD)

Triangle Collision (TOI)

Convex Collision (MTD)

Friction

• Friction in PBD traditionally applied using a velocity
filter

• Replace with a position-level frictional constraint

• Approximate Coulomb friction using penetration
depth to limit constraint lambda

• Generates convincing particle piling

• [Francu 2017]

C
friction

= |(x� x0) ? n|

Granular Materials

• Collections of hard spheres

• Treat friction during constraint solve

Rigid Bodies

Rigid Bodies
• Convert mesh->SDF

• Place particles in interior

• Add shape-matching constraint

• Store SDF dist + gradient on
particles

Rest Configuration

Deformed State

Best Rigid
Rotation/

Translation

Plastic Deformation

• Detect when deformation exceeds a
threshold

• Simply change rest-configuration of
particles

• Adjust visual mesh (linear skinning)

Shape matching on the GPU

• Shape matching requires computing centre of mass and the moment matrix for
particles: 
 
 

• Large summations, not immediately parallel friendly

• Optimized using two parallel cub::BlockReduce calls

• O(N) -> O(logN) (18ms -> 0.6ms)

• 1 block per-rigid shape (64 threads, heuristic, irregular workload problem)

• Polar decomposition still single threaded

A =
X

i

mi(xi � c)(x̄i � c̄)Tc =
X

i

mixi/
X

i

mi

Robust and Simple Polar Decomposition

• Shape matching requires a polar
decomposition

• Can be done through SVD /
Eigenvalue decomposition

• Complex code, ill-posed for indefinite
systems

• Simple algorithm given in [Müller et al
2016]

• Robustly handles inversion through
temporal coherence

Generalised Coordinate Rigid Bodies

• Particle:

• Rigid body:

• Rotation is parameterized by exponential map

• Example, ball joint:  
 
 

• [Deul et al. 2014]

Generalized Rigid Body Constraint Gradients

• Split gradient into a constraint part and connector part
• Particle: 
 
 

• Rigid Body:

Generalised Position-Based Solver
• Linearization of constraint (rigid bodies):

• Computation of Lagrange multiplier:

• Correction vectors:

[�x

T ,�'T] = M

�1rC

T�

[rCM

�1rC

T]�� = �C(xi,'i)

C(x+�x,'+�') ⇡ C(x,') +rC(�x

T ,�'T)

Results

Fluids

Density Constraint

• Density via SPH kernels
• Unilateral constraint
• Cohesion from [Akinci13]

Cdensity =
⇢i
⇢0

� 1  0

Surface Tension Constraint

• Adapted surface tension model of [Akinci et al. 2013] to PBD

• Attempts to minimize curvature

✓

C

tension

= x̄ij · n̄i = cos(✓)

Two-Way Rigid Fluid Coupling

• Mostly automatic

• Include all particles in fluid
density estimation

• Treat fluid->solid particle
interactions as if both particles
solid

Cloth

• Graph of distance + tether constraints

• Self-collision / inter-collision automatically handled

Cloth - Forces

• Basic aerodynamic model

• Treat each triangle as a thin airfoil to generate lift + drag

• Flexible enough to model paper planes

n̄

v̄wind
f̄lift

f̄drag

v̄tri

Ropes
• Build ropes from distance + bending

constraints

• Fit Catmull-Rom spline to points

• Torsion possible [Umetani 14]

Examples

Limitations and Future Work

• Representing smooth surfaces problematic

• Want parallel and robust collision of simplices

• Hierarchical representation (multi-scale particles)

• Convergence for parallel solver / accelerated methods [Mazhar 2015]

Resources

• PBD available as an open source library: 
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

• Already supports many constraints: point-point, point-edge, point-
triangle and edge-edge distance constraints, dihedral bending
constraint, isometric bending, volume constraint, shape matching, FEM-
based PBD (2D & 3D), strain-based dynamics (2D & 3D).

• Simple interface: just one class with static methods.

• MIT License

• Demos for usage

https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

Conclusion

• Position-Based Methods are:
‣ Fast, stable and simple to implement,
‣ Provide a high level of control,
‣ Can simulate deformable solids (1D, 2D,

3D), multi-body systems, fluids and
granular materials,

‣ Can be viewed as an approximation of
implicit methods

Questions?

References
• English, Elliot, and Robert Bridson. "Animating developable surfaces using

nonconforming elements." ACM Transactions on Graphics (TOG). Vol. 27. No. 3. ACM,
2008.

• Goldenthal, Rony, et al. "Efficient simulation of inextensible cloth." ACM Transactions
on Graphics (TOG) 26.3 (2007): 49.

• Bouaziz, Sofien, et al. "Projective dynamics: fusing constraint projections for fast
simulation." ACM Transactions on Graphics (TOG) 33.4 (2014): 154.

• Bridson, Robert, Ronald Fedkiw, and John Anderson. "Robust treatment of collisions,
contact and friction for cloth animation." ACM Transactions on Graphics (ToG). Vol. 21.
No. 3. ACM, 2002.

• Stam, Jos. "Nucleus: Towards a unified dynamics solver for computer graphics."
Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics' 09. 11th IEEE
International Conference on. IEEE, 2009.

• Green, Simon. "Cuda particles." nVidia Whitepaper 2.3.2 (2008): 1.

• Guendelman, Eran, Robert Bridson, and Ronald Fedkiw. "Nonconvex rigid bodies with
stacking." ACM Transactions on Graphics (TOG). Vol. 22. No. 3. ACM, 2003.

• Servin, M., Lacoursiere, C., & Melin, N. (2006, November). Interactive simulation of
elastic deformable materials. In SIGRAD 2006. The Annual SIGRAD Conference; Special
Theme: Computer Games (No. 019). Linköping University Electronic Press.

• Provot, Xavier. "Deformation constraints in a mass-spring model to describe rigid cloth
behaviour." Graphics interface. Canadian Information Processing Society, 1995.

• Fratarcangeli, M., and F. Pellacini. "Scalable Partitioning for Parallel Position Based
Dynamics." EUROGRAPHICS. Vol. 34. No. 2. 2015.

• Liu, Tiantian, et al. "Fast simulation of mass-spring systems." ACM Transactions on
Graphics (TOG) 32.6 (2013): 214.

• Akinci, Nadir, Gizem Akinci, and Matthias Teschner. "Versatile surface tension and
adhesion for SPH fluids." ACM Transactions on Graphics (TOG) 32.6 (2013): 182.

• Ryckaert, Jean-Paul, Giovanni Ciccotti, and Herman JC Berendsen. "Numerical
integration of the cartesian equations of motion of a system with constraints: molecular
dynamics of n-alkanes." Journal of Computational Physics 23.3 (1977): 327-341.

• Umetani, Nobuyuki, Ryan Schmidt, and Jos Stam. "Position-based elastic rods." ACM
SIGGRAPH 2014 Talks. ACM, 2014.

• Müller, M., Bender, J., Chentanez, N., & Macklin, M. (2016, October). A robust method
to extract the rotational part of deformations. In Proceedings of the 9th International
Conference on Motion in Games (pp. 55-60). ACM.

• Bender, Jan, et al. "Position-based simulation of continuous materials." Computers &
Graphics 44 (2014): 1-10.

• Unified Simulation of Rigid and Flexible Bodies Using Position Based Dynamics -
VRIPHYS 2017

