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Analysis



Position-Based Dynamics

• Very stable 

• Highly damped 

• Example



Continuous Equations of Motion

• Newton’s second law 

• Will consider forces which we can derive 
from an energy potential E(x) 

• Our path: start with implicit Euler and 
transform it into PBD 

• Why implicit Euler? Also highly stable, 
damped.

Mẍ = f(x)



• Implicit Euler: 
 
 

• Equivalent to: 
 
 

• Forces evaluated at end of the time-step 

• Implicit, position-level, time-discretization of Newton’s equations

Implicit Euler Integration
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• Discrete equations of motion 

• Are the first order optimality 
conditions for a non-linear 
minimization 

• [Goldenthal et al. 2007] 
[Liu et al. 2013]

Variational Implicit Euler
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• In the limit of infinite 
stiffness we obtain a 
constrained minimization 

Variational Implicit Euler
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Geometric Interpretation

• Variational form gives a “step 
and project” interpretation for 
implicit Euler          

• PBD performs approximate 
projection
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Solving

• Implicit time discretization 
produces a non-linear 
system of equations 

• How do we solve such a 
system? 

• Newton’s method
g(xi,�i) = 0

h(xi,�i) = 0

M(xn+1 � x̃)��t2rC(xn+1)T� = 0
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Discrete constrained equations of motion

Non-Linear System



Approximate Newton Step

First approximation: 

• M = K + O(dt^2) 

• Common Quasi-Newton 
simplification  

Second approximation:  

• Assume g = 0 

• True for first iteration 

• Typically remains small

Full Newton System
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Variational Interpretation of Approximate Projection

Implicit Euler

PBD (each iteration)
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Problems

• To arrive at PBD we had to assume infinitely stiff energy potentials 

• This means PBD converges to an infinitely stiff solution regardless 
of stiffness coefficient 

• Stiffness dependent on iteration count and time-step 

• No concept of total constraint force 

• Fully implicit -> severe energy dissipation



Iteration Count Dependent Stiffness

160 ITERATIONS20 ITERATIONS



PBD Extensions

• Projective Dynamics [Bouaziz et al. 2014] 

• XPBD [Macklin et al. 2016] 

• Second order PBD



XPBD

• Instead of assuming infinite stiffness, 
allow constraints to be compliant 

• Leads to a modified / regularized 
non-linear system 

• Direct correspondence to engineering 
stiffness (Young’s modulus) 

• Compliance is simply inverse stiffness  

• [Servin et al. 2006]
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XPBD Newton Step

• Take Schur complement 
of approximate system 
with respect to M  

• Obtain PBD or Fast 
Projection form 

• [Goldenthal et al 2007]

Schur complement
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XPBD Gauss-Seidel Update

• View PBD “scaling fator” s 
as incremental Lagrange 
multiplier 

• Additional compliance terms 

• Must store Lagrange 
multiplier for each constraint 

• PBD solves the infinite 
stiffness case
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XPBD Algorithm

• Only two differences from 
PBD: 
‣ Lagrange multiplier 

calculation (include 
compliance terms) 

‣ Lagrange multiplier update 
(store instead of discard)



RESULTS

• Contact / friction



XPBD - FEM

• Generalizes to arbitrary 
constitutive models 

• Treat strain as vector of 
constraints 

• Compliance matrix is inverse 
stiffness
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RESULTS

• Contact / friction





Results - XPBD vs Implicit Euler

• Compare solver output to a 
non-linear Newton method 

• Close agreement for primal 
and dual variables



• First order backward Euler (BDF1):  
 
 
 

• Second order backward Euler (BDF2)

Second Order Implicit Euler
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• First order velocity update:

• Second order velocity update:

Second Order PBD
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• First order prediction: • Second order prediction:

• See [English 08]



Second Order PBD

First Order Second Order



Second Order PBD

First Order Second Order



Second Order PBD

First Order Second Order



Second Order PBD

• Significantly less damping 

• Positions stay closer to constraint manifold 

• Requires fewer constraint iterations! 

• Non-smooth events (contact) need special handling



Implementation



Parallel PBD

• Gauss-Seidel inherently serial 

• Parallel options: 
‣ Graph coloring methods 
‣ Jacobi methods 
‣ Hybrid methods



• Break constraint graph into independent sets 

• Solve the constraints in a set in parallel 

• “Batched” Gauss-Seidel 

• Requires synchronization between each set 

• Size of sets decreases -> poor utilisation

Graph Coloring Methods

3 Color Graph



Jacobi Methods
• Process each constraint or particle in parallel 

• Sum up contributions on each particle 

Particle-centric approach 
(gather)

Constraint-centric approach 
(scatter)

foreach particle (in parallel)
{
foreach constraint
{
calculate constraint error
update delta

}
}

foreach constraint (in parallel)
{
calculate constraint error
foreach particle
{
update delta (atomically)

}
}



• Problem: system matrix can be indefinite, Jacobi will not 
converge, e.g.: for redundant constraints (cf. figure)  

• Regularized Jacobi iteration via averaging [Bridson et al. 02] 

• Sum all constraint deltas together and divide by constraint 
count for that particle 
 

• Successive-over relaxation by user parameter omega [0,2]:

Jacobi Methods
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Parallel Methods Comparison

Method Advantages Disadvantages

Batched 
Gauss-Seidel

Good Convergence 
Very Robust

Graph Coloring 
Synchronization

Jacobi Trivial Parallelism
Slow Convergence 
Less Robust



Hybrid Parallel Methods

• Best of both worlds 

• Perform graph-coloring 

• Upper limit on number of colors 

• Process everything else with Jacobi 

• [Fratarcangeli & Pellacini 2015]



Solver Framework



• Simplifies collision detection 

• Two-way interaction of all object types: 

‣ Cloth 
‣ Deformables 
‣ Fluids 
‣ Rigid Bodies 

• Fits well on the GPU

Unified Solver

Everything is a set of particles 
connected by constraints



Examples

• Show some neat examples of what we can do with Flex that would 
not be possible in other frameworks 

• Smoke / Cloth 

• Water / Buoyancy







Particles

• Velocity stored explicitly 

• Phase-ID used to control collision 
filtering 

• Global radius 

• SOA layout

struct Particle
{
float pos[3];
float vel[3];
float invMass;
int phase;

};



Constraints

• Constraint types: 
‣ Distance (clothing) 
‣ Shape (rigids, plastics) 
‣ Density (fluids) 
‣ Volume (inflatables) 
‣ Contact (non-penetration) 

• Combine constraints 
‣ Melting, phase-changes 
‣ Stiff cloth, bent metal



Contact and Friction



Collision Detection Between Particles

• All dynamics represented as particles 

• Kinematic objects represented as 
meshes 

• Two types of collision detection: 
‣ Particle-Particle 
‣ Particle-Mesh
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Collision Detection Between Particles

• Particle-Particle 
‣ Tiled uniform grid 
‣ Fixed maximum radius 
‣ Built using cub::DeviceRadixSort 
‣ Re-order particle data according to cell 

index to improve memory locality 
‣ CUDA Particles Sample [Green 07] r



Collision Detection Against Shapes
• Particle-Convex 
‣ 2D hash-grid 
‣ Built on GPU 

• Particle-Triangle Mesh 
‣ 3D hash-grid 
‣ Rasterized in CUDA 
‣ Lollipop test (CCD)

Triangle Collision (TOI)

Convex Collision (MTD) 



Friction

• Friction in PBD traditionally applied using a velocity 
filter 

• Replace with a position-level frictional constraint 

• Approximate Coulomb friction using penetration 
depth to limit constraint lambda 

• Generates convincing particle piling 

• [Francu 2017]
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Granular Materials

• Collections of hard spheres 

• Treat friction during constraint solve



Rigid Bodies



Rigid Bodies
• Convert mesh->SDF 

• Place particles in interior 

• Add shape-matching constraint 

• Store SDF dist + gradient on 
particles

Rest Configuration

Deformed State

Best Rigid 
Rotation/ 

Translation





Plastic Deformation

• Detect when deformation exceeds a 
threshold  

• Simply change rest-configuration of 
particles 

• Adjust visual mesh (linear skinning)



Shape matching on the GPU

• Shape matching requires computing centre of mass and the moment matrix for 
particles: 
 
 

• Large summations, not immediately parallel friendly 

• Optimized using two parallel cub::BlockReduce calls 

• O(N) -> O(logN) (18ms -> 0.6ms) 

• 1 block per-rigid shape (64 threads, heuristic, irregular workload problem) 

• Polar decomposition still single threaded
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Robust and Simple Polar Decomposition

• Shape matching requires a polar 
decomposition 

• Can be done through SVD / 
Eigenvalue decomposition 

• Complex code, ill-posed for indefinite 
systems 

• Simple algorithm given in [Müller et al 
2016] 

• Robustly handles inversion through 
temporal coherence





Generalised Coordinate Rigid Bodies

• Particle: 

• Rigid body: 

• Rotation is parameterized by exponential map 

• Example, ball joint:  
 
 

• [Deul et al. 2014]



Generalized Rigid Body Constraint Gradients

• Split gradient into a constraint part and connector part 
• Particle: 
 
 

• Rigid Body:



Generalised Position-Based Solver
• Linearization of constraint (rigid bodies): 

• Computation of Lagrange multiplier: 

• Correction vectors:
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Results



Fluids



Density Constraint

• Density via SPH kernels 
• Unilateral constraint 
• Cohesion from [Akinci13]
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Surface Tension Constraint

• Adapted surface tension model of [Akinci et al. 2013] to PBD 

• Attempts to minimize curvature
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Two-Way Rigid Fluid Coupling

• Mostly automatic 

• Include all particles in fluid 
density estimation 

• Treat fluid->solid particle 
interactions as if both particles 
solid





Cloth

• Graph of distance + tether constraints 

• Self-collision / inter-collision automatically handled



Cloth - Forces

• Basic aerodynamic model 

• Treat each triangle as a thin airfoil to generate lift + drag 

• Flexible enough to model paper planes

n̄

v̄wind
f̄lift

f̄drag

v̄tri





Ropes
• Build ropes from distance + bending 

constraints 

• Fit Catmull-Rom spline to points 

• Torsion possible [Umetani 14]





Examples











Limitations and Future Work

• Representing smooth surfaces problematic 

• Want parallel and robust collision of simplices 

• Hierarchical representation (multi-scale particles) 

• Convergence for parallel solver / accelerated methods [Mazhar 2015]



Resources

• PBD available as an open source library: 
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics 

• Already supports many constraints: point-point, point-edge, point-
triangle and edge-edge distance constraints, dihedral bending 
constraint, isometric bending, volume constraint, shape matching, FEM-
based PBD (2D & 3D), strain-based dynamics (2D & 3D). 

• Simple interface: just one class with static methods. 

• MIT License 

• Demos for usage

https://github.com/InteractiveComputerGraphics/PositionBasedDynamics


Conclusion

• Position-Based Methods are: 
‣ Fast, stable and simple to implement, 
‣ Provide a high level of control,  
‣ Can simulate deformable solids (1D, 2D, 

3D), multi-body systems,  fluids and 
granular materials, 

‣ Can be viewed as an approximation of 
implicit methods



Questions?
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