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We develop and test a new elementary Monte Carlo move for use in the off-lattice simulation of
polymer systems. This nov&larallel-Rotation algorithm(ParRo} permits moving very efficiently

torsion angles that are deeply inside long chains in melts. The parallel-rotation move is extremely
simple and is also demonstrated to be computationally efficient and appropriate for Monte Carlo
simulation. The ParRot move does not affect the orientation of those parts of the chain outside the
moving unit. The move consists of a concerted rotation around four adjacent skeletal bonds. No
assumption is made concerning the backbone geometry other than that bond lengths and bond angles
are held constant during the elementary move. Properly weighted sampling techniques are needed
for ensuring detailed balance because the new move involves a correlated change in four degrees of
freedom along the chain backbone. The ParRot move is supplemented with the classical Metropolis
Monte Carlo, the Continuum-Configurational-Bias, and Reptation techniques in an isothermal—
isobaric Monte Carlo simulation of melts of short and long chains. Comparisons are made with the
capabilities of other Monte Carlo techniques to move the torsion angles in the middle of the chains.
We demonstrate that ParRot constitutes a highly promising Monte Carlo move for the treatment of
long polymer chains in the off-lattice simulation of realistic models of dense polymer systems.

© 2001 American Institute of Physic§DOI: 10.1063/1.1371496

I. INTRODUCTION isothermal—isobaric Monte Carlo simulations of melts of
short and long chains.
In dense polymer systems in continuous space, the goal
of efficient phase-space sampling by Monte CaMC) isa || 14 pARALLEL ROTATION ALGORITHM
most difficult one, since it is very hard in simulations to
change from one configuration to the successive one, espe- The high-dimensionality of the configurational space to
cially at high densities. Significant progress has been mad&mple constitutes a major difficulty in simulations of dense
in this field in the last few years by a combination of geo_polymer phases. Fortunately, the structural complexity of
metric methods such as Reptatod, the Continuum- Polymeric systems, namely, the geometry and connectivity,
Configurational-Bias methoCBMC),%~6 or the Concerted- Provides a way to simplify the problem: by working in gen-
Rotation methol® and its extension3. eralized coordinates, the number of degrees of freedom may
Here we introduce a novel off-lattice sampling techniquebe considerably reducél.The molecular geometry can be

that aims at enhancing the efficiency of existing MC meth_soIer determined by the p.osmon :_;md orientation of the chain
start and by the successive torsion angles along the back-

ods. We focus our attention on three currently incompatibleoOne The bond lenath and the bond anales are assumed to
aspects essential for the new algorithm to be a prerequisitg ' g g

for a promising sampling technique: the computational effi- e fixed(truly rigid constraint bonds This assumption only

. d robust the ability to treat | | slightly affects the vibrational frequencies of the ‘“soft”
clency and robustness, the ability o treat 1ong polymel.,,qeq associated with torsion angtésince the approach is

chains, and the applicability to chemically realistic polymerdesigneol to be used in configuration-space Monte Carlo

structures with side-groups. ) - methods, only the potential energy part of the system Hamil-
The new elementary move, a Parallel-Rotation algorithmyyian is addressed.

(ParRoj, consists of a concerted rotation around four adja- _

cent skeletal bonds forming the moving unit in such a way” The geometric problem

that the orientation of those parts of the chain outside the The rearrangement of dihedral angles of a chain in a

moving unit is not modified. concerted fashion, subsequent to the turning of one single
In this paper, the ParRot move is supplemented with thelihedral angle, has been first addressed by Go and Scheraga,

classical Metropolis Monte CarltMMC), the Continuum-  and further developed by Dodd, Boon, and Theodbrasi

Configurational-Bias, and Reptation techniques inthe Concerted-Rotation methd@onRoj.
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T(P)=Ry(d)Ry(7+0)
—Ccosé sing 0
=| —cos¢singd —cos¢pcosd —sing|. (1)
—singsind —singsind  cosg¢

Note that the bond anglé must not necessarily be the
same for all bond junctions along the skeletal chain back-
bone.

As previously suggested, the geometric constraint for a
FIG. 1. The ParRot move is a concerted change in the torsion angleparallel rotation(ParRoj move is that both vectons andu,
{¢1,¢2,¢3} driven by a change iy The vectorsu andu, remain un-  gre kept constant. A system of two equations, dictated by the
changed after the ParRot move. . .

molecular geometry, to account for the geometric constraints
can now be specified in the reference frame of the bond
Hectorbo as

The ParRot move consists of a concerted rotation of a
arbitrary set of four adjacent torsion angles within a chain. = gdiven( goew T gnew e
These torsion angles form a moving unit that, in the same
way as a hinge, determines the relative position and orienta- ~ =T(#o)T(h1)T(d2)e,, )
tion of both the chain ends attached to it. The ParRot move is driver ne e e
a rearrangement of the dihedral angles within that moving U1 =T(#0" HT(E1™)T($")T($3™ey
unit, whereas both chain ends attached to it are coerced to

' =T(do)T(d)T(d2)T : 3
keep the same relative orientatidsut not the same relative .(%) (S T(@2)T(Ss)ey ©
position. In other words, if one of the chain ends is kept where ¢3™*' denotes the new value imposed for the driver

fixed in space, the other chain end is displaced but its oriertorsion angle, and 7", 5", $5°" the new values of the
tation remains unchanged. remaining angles of the moving unit to be determined. As a

Imposing a constant orientation to chain ends involveanatter of fact, these six scalar equations enforce only three
three geometric constraints, two for the direction and one formplicit geometric constraints to be fulfilled. This is due to
the orientation along this direction. To fulfill three condi- the fact thatT, as a rotation in space, conserves the vector
tions, the ParRot move must, at least, comprise the concertdeingths, and, therefore, the vectarsand u, automatically
move of three degrees of freedom. The fourth dihedral angléhave the same length as the vectgrande, (of unit length.
the driver torsion angle, serves to steer the concerted movén addition, because of the same reason, the vectaaad

Consider the four contiguous bonds with torsion anglesu, , which are, by definition, perpendicular, and conse-
{do,d1,d2,¢3} in Fig. 1 to form the ParRot moving unit. quently not independent, are necessarily mapped back onto a
The rotation bond; with the torsion anglap; defines the pair of perpendicular vectors. The vect@sande, are per-
direction of the chain end attached to the moving unit. Thependicular, and, so, an additional constraint is implicitly sat-
vector b,Xbs; furthermore determines its orientation. isfied. To sum up, the vectaraccounts for the conservation
Throughout this paper, we use the unit vecto($bs) and  of direction of the moving chain end, and the veator for
u, (Ilb,Xbs) as direction and orientation vectors, respec-its orientation alongi.
tively. The ParRot move keepsandu, constant. Since EQ.(2) and (3) involve four degrees of freedom

We useT (¢) to define the transformation of a vector in and only three constraints, the system of equation is under-
the frame of reference of bondt1 into the frame of the determined. One of the dihedral degrees of freedom can be
preceding bond (see Fig. 2, expressed as the combination freely chosen to determine the values of the others, i.e., the
of two rotations:? Pgerot move is uniquely driven by a change ¢f into
¢Orlver.

Solving Eq.(2) directly provides the valuep, of the
second torsion angle. To calculapg, first consider the vec-
tor

V(5™ o, b1, b2) =T(d5™) " tu(bo, b1, b2),  (4)

which is entirely determined by the known valugg™®",

¢o, @1, and ¢,. The componenv, solely depends on the
new value¢5®", and consequently directly provides the so-

lution

driver
COS¢2eWZ Cosal Cosaz_vx( ¢0 '¢Oa¢la¢2) ,

FIG. 2. Generalized Coordinates encompass torsion angles along the back- sing,siné;
bone. The bond angle supplemestsand the bond lengthkb;|| are assumed

to be fixed. In the local coordinate system located at each atom the ~ Whered; and 6, are the bond angles between bomdsand
bond vectorb; is aligned along the locat-axis (&,). b,, and bondsb, and b, respectively. According to the

®)
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value of the right-hand side in E@5), ¢5°" admits either 4 A R T —
zero (r.h.s>1), one (r.h.s=1) or two values (r.h.s:1).

Upon substituting the obtained values 5" into Eq.
(3), one gets the linear equation,
a —-b| 1
b a|1-V:
where  the  parameters a:=(sin#,cosé,+cosgp,™"
X cosé, sin6,) and b:=(sin #,sin$>") depend uponps".
The fact that®+ b?=1 indicates that the matrix in E¢6) is
a rotation matrix, and hence conserves the vector lengths
This is in complete agreement with the fact that the left-hand
side of Eq.(6) is a vector of unit length and that +v; ] S ; , .
=1-V2 holds. Thus, we can conclude that, for each value of 0 &0 120 180 240 30 360

gew, an unique SO|UtiOI’¢29W exists. Driving Torsion Angle @, [deg]

Wh_lle the d'hedr_al anglesho, ¢1, a”({' (_bZ suffice to FIG. 3. The displacements of the moving chain end are shown for the two
determine the direction vectar, the remaining degree of solutions of the ParRot problem for varyinty < [0,27) with initial values
freedomgs only causes the vectar, to be rotated around. of the torsion angles apy=0°, ¢;=15°, ¢,=115°, andp;=—4°. Com-
Given the three first torsion ang|e$gew can readily be cal- Parison is made with the van der Waals radisis; 3.94 A. The correspond-
culated as the angle betwean and the corresponding vec- "9 Sets{¢1:¢2. s} of solutions are also shown.
tor when ¢, has not yet been modified.

The ParRot move can be summarized as the followingated with large changes i, are possible without inducing
steps:(i) a driver torsion anglep, is selected within the |arge atom displacements, and thus without creating severe

chain; (i) one of the two chain ends starting from, is  overlaps. This must also hold for torsion angles deeply
selected and the orientation vectorsandu, are calculated; wjithin long polymer chains.

(iii ) a valuegg®™ is assigned to the driver torsion angl&/;)

sets of new valuegi®", ¢5°", and ¢3°" for the three tor- ¢ A pias Monte Carlo

sion anglesp,, ¢,, ¢35 consecutive tap, on the side of the ) ) ) ) o
selected chain end are calculated so thand u, remain Turning to.Monte Carlo S|mL_JI_at|ons requires the indis-
unchanged. In this formulatioh, is the driver torsion angle Pensable detailed-balance condition to hold in order to en-
of the ParRot move. Only the four dihedral anglesSure the distribution to be stationary along the Monte Carlo

{bo, b1, b2, s} are modified by the move. simulation.13 This, in turn, requires the exact numbe;r of so-
lutions for a Monte Carlo move to be known. As discussed
by Doddet al.® and Leontidiset al.® the Concerted Rotation

algorithm, which also consists of a concerted move of dihe-

At first sight, it is not obvious whether the ParRot tech-dral angles driven by the changes in one driver angle, neces-
nique can successfully handle long polymer chains in a densgitates challenging numerical calculations to estimate the
phase. As one might expect, the critical factor for moves oftumber of solutions. On the contrary, the existence of an
chain segments to be at all feasible in a dense environment &nalytical solution for the ParRot algorithm permits us to
the amplitude of displacement of atoms induced by theexactly calculate the number of solutions for any attempts of
move. In the case of ParRot, because of the conservation &farRot moves. The ParRot algorithm does not pose any nu-
its orientation, the displacement of a chain end is such thaherical problems that could endanger its efficiency.
all involved atoms are displaced by the same vector. The A proper choice of the acceptance criteridor instance
displacement amplitude determines if severe overlaps béVetropolis or Glauber dynamigguarantees a stationary en-
tween atoms are likely to occur in a Monte Carlo simulation.semble distribution, which can be, for instance, the Gibbs

Figure 3 shows a typical ParRot trajectory for values ofénsemble distribution. In this case, the Monte Carlo accep-
the driver angleg, ranging from 0 to Z~. The bond angle tance probability for going from stateto m,
_complements all assume the same valee68° correspond- . N(m— n)J(n)exd — BV(n)]
ing to the “polybead” model used later for Monte Carlo P(n—m)=minj 1,
simulations. The bond length is 1.53 A, and the van der N(n—m)J(m)exd —BV(m)]
Waals radiusr=3.94 A gives an estimate of the typical dis- suffices, where8:=(k,T) %, andV(n) is the potential en-
tance between closest atoms. It is fortunate that, despite largegy of the state labeled with N(n— m) is the total number
changes in the dihedral angles involved in the ParRot movegf states attainable from in the move leading from state
the displacements in space of the atoms from their originalo m. J(n) is the Jacobian determinant factor, which has been
positions is almost always small comparedstaHalf the ¢ introduced in the acceptance probability in E@). to coun-
values (in our example, from 0 to 03 and 1.3 to 2m) terbalance the geometric bias.
induce at least one displacement smaller than 1 A. This ex- A Monte Carlo method that simultaneously encompasses
ample strongly suggests that, even in simulations of densgeveral degrees of freedom in a concerted manner usually
phases, large concerted changespin ¢,, and ¢; associ- generates biased distributions of states, if not corrected. The

o

Displacement [A]

40k .
35 ST "~ Solution2 HO

cosg "

sing;®"

A

(6)

Torsion Angle @ {deg]

B. The ParRot move

)
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FIG. 5. Acceptance rate of Monte Carlo simulations of 20 chains of 24
Torsion angle ¢ [deg] beads for varying maximal amplitude of the changes in the driver angle of
the ParRot move. The rate of geometric failure corresponds to the cases
FIG. 4. Torsion angle distribution in a Monte Carlo simulation @f ghan- where the geometric ParRot problem has no solution (FHL}.

tom chains. The black curve has been obtained in simulation without Jaco-
bian bias correctiod(n) in the acceptance probability, and the gray curve
corresponds to simulation with Jacobian bias correction.
potential and nonbonded interactions, an uniform distribution
of dihedral angles must be expected. Figure 4 presents a
Monte Carlo acceptance scheme must be biased to providemparison of the angle distribution obtained with biased
the correct uniform distribution corresponding\{¢n), i.e.,  and unbiased acceptance probability. Obviously, the geomet-
proportional to the Boltzmann weight &f(n). Following  ric bias cannot be neglect, and is fully removed when con-
Doddet al,® we calculatel(n) as Jacobian determinant of a sidering the contributiod(n) to the acceptance probability
transformation relating the coordinate frame of geometriccriterion.
constraintsu and u, to the one of dihedral angles

{b0, b1, 02, ¢} We define

- ou au ou Ill. MONTE CARLO SIMULATIONS
Ia I$2 I3 & The present work aims at comparing the ParRot method
au au au to existing off-lattice Monte Carlo techniques. For that pur-
J(o,u,u,):=det b1 ag, S ags O ) pose, ParRot is supplemented with three Monte Carlo moves:
(i) the Metropolis moveMMC) consists of a random dis-
ﬂ.e ou e ouL e placement of the position and orientation of the chain simul-
| dp1 7 Ay T Iy 7] taneously to random changes in the torsion angles of the
wheren, \, ye{x,y,z}, and\# v. chain backbone;(ii) the Continuum-Configurational-Bias
A change in torsion angle; is tantamount to a rotation Method(CBMC) (Refs. 4 and 5 consists of a “cut” at a
about the backbone borig, that only affects the bonds;, ~ random position of a chain end and its step-by-step regrowth;
wherej>i. The infinitesimal rotation about, may be writ- (i) the Reptation moveconsists in the removal of the bond
ten as at a randomly selected end of the chain, and its regrowth at
o the other end of the chain. For a comprehensive review of
doy |0 =i, these moves, see Leontidis al® No comparison was made

9

with the Concerted-Rotation methdd since this method
does not affect the chain ends and prohibits center-of-mass
diffusion.

J( o, u,u; ) |u-(ugXu,)l, (10 Our results were obtained with polybead molecules in
the united atom approximation. These are chains formed by

where the vectors;:=b; /||b;|| of unit length are collinear to o
b, andb,, the bonds with torsion angles, andé,, respec- beads connected by rlg!d bonds of length 153 /3\ The bond
angle between successive bonds of a chain is fixed at 112°.

tively. To determine the acceptance probability of a Monte . . . - .
Carlo move,J(n) must be calculated for the initial and the The torsional potential energy funcﬂ_on used, originally intro-
destination state of the move. duced by Ryckaerts and Bellemass

To ascertain that the biased Monte Carlo acceptance 5
probability satisfies the condition of microscopic reversibil- Uigd #)=C >, a,cod ¢ (17
ity, we carried out a simulation of freely-rotating phantom n=0
chains of 16 Monte Carlo steps. In the absence of torsionalwith constant coefficientsC=9.27 kJ/mol, ay=1, a;

agi | bxb; j>i.
Substituting Eq(2.3) in Eq. (8) leads to the final expression,
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TABLE I. Average properties over simulations of combined Monte Carlo The NpT Monte Carlo simulations reported comprise 5

techniques in 20 &, 10 Gy, and 9 Goo .10° MC steps for 206G, and 10G;, and 210° or 3
20 Gy 10 G,y 9 Ciop -10° MC steps for 9 G Thermodynamic quantities are
— pos 13 13 summarized in Table | and Il. Note that, due to the simplified
o @) 0.62-0.01 0.66-0.03 0.67-0.01 energy model noted above, the agreement with experimental

(R2e/(R2) 8.08+ 005 722+ 0.26 6.410.15 values cannot be perfect. The energies quoted in Table Il are
statistically identical and are reported only to show that the

results of the simulations are not affected by substitution of

ParRot for more traditional moves.

=1.31, r= —1.414, @3=-03297, «,=2.828, as Table 1l shows the results of Monte Carlo runs for
=—3.3943.” By this, the skeletal torsion angles are biased10 C,,. It is interesting to note that the fraction of accepted
to favor trans and gauchestates. Monte Carlo moves is not strongly affected by the combina-

Sites on different chains and th0§e on the same chaifion of moves. However, the ParRot move seems to benefit
separated by more than three bonds interact through a nofrom cooperative effects among the moves as the relative

bonded Lennard-Jones interaction function, large variation of its acceptance rate for different combina-
o\ 12 [\ 6 tions of moves demonstrates.
ULJ:48”[ (r_") (r—”) } (12 The acceptance rate of the single moves is dependent on
ij ij

adjustable parameters such as, in the case of MMC, the am-
The energy-depth parametey =& =0.41 kJ/mol is the same plitude of change in torsion angles, or, in the case of the
for end-beads and middle-beads, and the bead size is set @BMC method, the number of trial directions at each step of
0=3.94A. These values have been found to reprogid&  the regrowth. In the ParRot method, the only adjustable pa-
data of short polyethylenésHere, quantitative agreement rameter is the maximum displacemeht, of the driver
betweenpVT data and simulation is not sought and we treatangle ¢,. While a smaller value ofA ¢, leads to higher
therefore, the energy model in a simplified form, i.e., with aacceptance rates of the ParRot moves, a larger value pro-
cutoff at 2.5 and no tail correction. duces larger steps through the configuration space. Trial runs

The simulations have been performed using a cubic boxf 20 G,, demonstrate that the acceptance ratio can readily be
in an isothermal—isobaric simulatidiNpT-simulation at a  controlled by adjusting\ ¢, (see Fig. 5. The acceptance rate
pressure of 1 bar, following the procedure of Bdjd/ol-  of ParRot typically ranges from 5% to 75% according to the
ume fluctuation moves were performed every 500 or 100@mplitude ofA ¢¢. ParRot also involves a more subtle effect
moves, depending on the overall length of the simulation. Arof geometric nature. Larger amplitude¢, increases the
acceptance ratio of 20%—-30% for the volume fluctuationnumber of geometric failures because it is more likely to
move was obtained with a maximal amplitude change of thencounter cases where the number of solutions of the ParRot
box side of 0.2 A. The minimum image convention was usedequations falls to zero. However, Fig. 5 clearly demonstrates
in all the simulations. that the geometric failure level never exceed 6%. Further

Three different polybead melts were investigated: a syssimulations involving ParRot moves were carried out with
tem of 20 chains of 24 beads each at 473 K (29 Ca melt A ¢y=36° resulting in an acceptance ratio of about 20%.
of ten chains of 71 beads each (1f)Cat 513 K and a melt The parameters for the other methods have been consistently
of nine chains of 100 beads each (§§ at 513 K. kept constant in all simulations.

The new method of Mier et all” was used to generate While the sampling ability of Monte Carlo techniques is
starting structures for the simulations. This method consistmost relevant, their computational efficiency also contributes
of a heuristic search algorithm in the space of torsion anglegp their overall performance. The relative CPU efficiency
which is capable of including configurational information in compares the average number of moves performed in the
the structure generation and automatically delivers corred€PU time required for a CBMC move and is summarized for
configurational statistics of the chains. The firsP Monte  Reptation and ParRot in Table 1ll. A CBMC move undoubt-
Carlo steps were ignored in assessing the simulation resultedly requires more computational effort than the other

TABLE Il. Results obtained with different combinations of Monte Carlo techniques in isothermal—isobaric Monte Carlo simulationsc&t1813G K and
1 bar. The simulations comprise8L0° MC steps each. Thermodynamic properties and computational speed are compared. All simulations have been carried
out on a Silicon Graphics workstation of type OctdR10000.

Combination of move%) Accepted move$%) Properties

MMC Reptation CBMC ParRot MMC Reptation CBMC ParRot MC stepss  (Ey (kJ/mo) (Eorg (kd/mo)

10 30 30 30 4.3 14.3 6.1 18.0 20.7 17.328.2 2648.6:87.2
10 10 10 70 4.2 14.3 5.8 17.9 24.7 —14.9+-243.0 2629.585.4
10 10 70 10 3.6 13.8 6.0 22.1 15.8 46.702.5 2675.585.5
10 70 10 10 5.6 17.8 6.6 23.7 24.6 4F.854.6 2626.5:81.5
10 40 40 10 3.1 13.4 6.0 17.6 18.8 —72.0+193.8 2638.%86.2
10 40 10 40 2.8 12.7 5.9 17.4 23.1 —105.0-161.8 2657.488.6
10 10 40 40 4.1 14.3 6.1 18.1 22.0 27.256.8 2655.291.0
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TABLE Ill. Average number of MC steps performed during the time nec- 10° T : . T T . T T T
essary for a CBMC step. All simulations have been carried out on on Silicon
Graphics workstations of type Octaff@10000. sk e 20C,,
. R —— 10C,,
20 Cyy 10 G, 9 Cio 2 LS 9C,,
= 10'k b ]
CBMC (MC step 1.0 1.0 1.0 E NS
Rept(MC step 1.71 1.89 1.26 5 ,
ParRot(MC step 1.73 2.06 1.8 &g
a |
§ E
£ E

moves. It also appears that ParRot and Reptation use con

10' —
putational resources roughly equally. :

s

miliin ,
150 165 180

0 15 30 45 60 75 90 120 135

Torsion Angle Change A® [deg]

105

IV. SAMPLING EFFICIENCY

To demonstrate the relative sampling ability in the spacd!G- 7. Distribution of changes in torsion anglgs, ¢,, and ¢; for ac-
of dihedral angles, two simulations were performed on a sysSePted ParRot moves in simulations of18° MC steps of 20 G, 10 Cn,

. . . and 9 Goo
tem of 10G4. In both simulations, the elementary MMC

move (10% accompanies either Reptation mov@9%) or

ParRot move$90%). Beginning with the same initial struc- carried out with 10% MMC, 10% Reptation, 10% CBMC,
ture, the occurrence densities of dihedral angles were calcUy, 4 700 ParRot moves. We observe in Fig. 7 that most
lated for both runs, with 510° MC attempts each and a sam- changes in dihedral anglg range from 0° to 45°. How-
pling frequency of 2000 MC attempts. Figure 6 shows theseyer “ 4 small number of ParRot moves results in larger
dlstrlbutlons. Slnce' the numper of MC attempts employedch(,j“,](‘:]es in dihedral angles with amplitudes up to 150°.
suffices for Reptation to attain proper sampling of all theg)igpyy gifferent distributions are characteristic for systems
bonds in the chains during simulatiéthe middle bonds are .1 gifferent chain lengths.

typically moved after 110f), the distribution obtained with Figure 8 provides a comparison between simulations
Reptation constitutes a benchmark for other moves. As rehere the maximum changes in the driver angle were
quired, the distribution obtained with ParRot converges to_ 36° andA$=180°, respectively. As one might expect
Fhe_ same form and s:hows, n "?‘d_d't'on’ a smoothness th%‘imulations of 10€, and 9G,, demonstrate that, on the one
indicates a robust aptitude to efficiently sample the space qf,n4 an increase of the maximum amplitutig slightly
torsional degrees of freedom. decreases the number of accepted moves, but that, on the

~ Afirst reason for the robust behavior of ParRot residesyiar hand, the tails of the distributions are only marginally
in the fact that three to four dihedral angles are simulta,¢acted by the amplituda &.

neously involved in a move. A second reason might be the 1o effect of A¢ on the ParRot move is clear when

amplitude of changes of the dihedral angles of the moving,qitoring displacement amplitudes of the moved chain at-

units, namely A¢o, A¢y, Ady, andAds. Figure 7 pre- g Figure 9 shows that typical atom displacements range

sents the distributions of these for the accepted ParRot 4y 010 1 A. Remember that all atoms of the moving chain

moves in simulations of 20% 10C;, and 9Ggo in TUNS ot are equally displaced in a ParRot move. In rare cases,
the atom displacement can even attain more than 3 A.

0.020 —— Ty ——— ———————

>
% 10% MMC / 80% ParRot
2 0.015 10° T T T T T T ! T T
s E

0.010 _ a0 ]
et (U W ) ANNUOPY S U SO RS SR s A®,= 36°/9C,, | ]
= e A, = 180° / 9C.
® o0.005 2 0= 180°/9C,, | 3
o | /\ g A= | A®, = 36°/10C,,

0.000 [P B s i 1 i ' p=3 — AP, = 180°/ 10C,,
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x
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LZ)‘ 10% MMC / 90% Reptation | Y o
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Torsion Angle @ [deg]

Torsion Angle Change A® [deg]

FIG. 6. Distributions of dihedral angles obtained in simulations of 20 C FIG. 8. Distribution of changes in torsion anglés, ¢,, and ¢; for ac-
for mixtures of ParRot and MMC moves, and Reptation and MMC moves,cepted ParRot moves in simulations of18 MC steps of 10 G, and 9

respectively. The total number of MC steps is18°, and every two thou-
sandth configuration has contributed to the distribution statistics.
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C,00 The maximal amplitude of change in the driver torsion angles has been
taken to beA ¢,=36° andA ¢,=180°.
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0FIG. 11. Distribution of accepted moves at each bond within the chain in

FIG. 9. Distribution of displacements of the moving chain end for accepte
P 9 P simulations of length 310° MC steps of 9 Gy,

ParRot moves in simulations of- 20° MC steps of 20 G, 10 G,;, and 9
ClOO-

Figure 10 shows how the displacement of atoms varies iK0Wledge, none of the presently existing off-lattice Monte
ParRot is used together with other techniques in-10Even Carlo methods is capable to sample so efficiently all tor-
though the combination 10% MMC, 30% Reptation 30%sional degrees of freedom regardless of their position within
CBMC, 30% ParRot comprises less ParRot attempts than 819 chains. _
simulation purely based on ParRot, the fraction of accepted A Similar assessment has been made for L0(€ee Fig.

ParRot moves is still larger than in the case where the maxit2- Here the distribution of CBMC moves has been in-
mum driver amplitude ¢ was increased to 180°. cluded (the depth of the cut has been trackeDue to the

Efficient sampling of the torsional degrees of freedom Ofshorter chains, the r.elative decrease of acceplted. ParRot
chains requires all the dihedral angles to be relaxed duringmves between Fhe middle and the end of the chains is not as
simulation. It becomes a particularly difficult task for dihe- Pronounced as in 94 The performance of the CBMC
dral angles deep within the chains. For instance, MMC perméthod clearly worsens when handling bonds deeper in the
forms poorly in that case because, due to leverage effect§hains and is only practical for the terminal dozen bonds or
only tiny changes in dihedral angles can lead to reasonabR®: it decreases exponentially with the number of bonds for
acceptance rates. regrowth. .

In order to assess the capability to relax dihedral angles The_meazn-square displacement of the center-of-mass of
within the chains, the number of accepted ParRot attemptd'® chains(rc, ) constitutes a criterion of long-time and
for each bonds chosen as driver angle can be counted. lgng-distance performance of simulation techniques. ParRot
simulation of long chains (9 depicted in Fig. 11 dem- alone provides little towards displacing the center-of-mass of
onstrates that the acceptance of ParRot moves is hardly af?€ chainsFigs. 13 and 14 Introducing Reptation dramati-
fected by the location of the moving unit. About half as C@lly improves performance and a balanced mixture of
many ParRot moves are accepted for dihedral angles in tH@eptation/ParRot sat_|sfa_ctor|ly compet_es with the Rgpta_mon/
middle of the chain than for those at the extremities. To ou"'ROVCBMC combination. In both figures, combinations

10° T T T T T T T

" 07
e A = 180 1100% ParRot

------ A®, = 36°/100% ParRot
——A®,= 36"/ 10% MMC / 30% Rept / 30% CBMC / 30% ParRot E 06

Accepted ParRot Moves

Relative Frequency

4.0 45

o 5 10 15 20 25 30 35 40 45 50 55 60 65
Atom Displacement [A] Bond Index

FIG. 10. Distribution of accepted ParRot moves for varyihg, of the FIG. 12. Distribution of accepted moves at each bond within the chain in
driver torsion angle in simulations of length B MC steps on 9 Gy simulations of length 310° MC steps of 10 G,.
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1000 ¢ AN 7 applied to structures with pendant groups, or even branching
Rg> = o ',..'q"-.a‘sz;ﬂ structures and to systems with arbitrary bond lengths, angles,
o A % and monomer-unit sizes.
N 3 . . . .
e m&m 3 ,J""V Th_e ParRot algorlthm permits changing torsion ar?glgs
oK /}V/VJ e . and displacing large chain segments that are deeply inside
"l ./f?f(ff\ﬁ )/ pan ~X/\AJ long chains in dense polymeric system. ParRot enables effi-
o8 S A A cient changes of dihedral angles in the moving unit of up to
Y e ] 120° and enables the displacements of atoms in the moving
/ 7 MG { S e 50 GBMG  30% Parct chain end of up to 1.5 A. The number of accepted ParRot
0.01 o % CBMC H moves is hardly affected by the depth of the variable unit in
“"l““"’“'a’“‘ l the chains. Even in systems with the longest chains investi-
B3 0% T pr— pll gated here (g, the number of successful ParRot attempts
Monte Carlo Steps in the middle of the chains was about half of that at the chain

ends. ParRot thus provides a most appropriate technique for
efficiently sampling all dihedral angles. The Monte Carlo
acceptance rate of the new elementary move is not very sen-
sitive to the maximal amplitude of change of the driver tor-
sion angle and can be adjusted to a broad range of values:
without ParRot were among the worst performing mixturesfrom 5% up to 75%.

FIG. 13. Diffusion of the centers of mass of the chains in simulations of 9
C,o Obtained with different combinations of Monte Carlo techniques. The
straight line is of unit slope and serves as guide.

of moves tested. Special considerations are required in designing the ac-
ceptance criterion of the elementary MC move in order to
V. CONCLUSIONS satisfy the principle of detailed balance in MC methods.

The novel off-lattice ParRot method has been demond €StS prove that thi_s acceptance criterion. is correct. '
ParRot predominantly addresses the issue of moving all

strated to be suitable for the isothermal—isobaric simulation . les i hai is ineffici i displaci h
of atomistically detailed dense polymer systems, especiall{°rSiON angles in a chain, but is inefficient in displacing the

for long chains at high density. ParRot operates on the entir‘éhains as a whole. Large rates for the diffusion of the centers

chain in contrast to most continuum MC methods that oper® Mmass of the chains can only be obtained when balanced

ate only on the chain ends or the chain interior. Solution€@Mpinations of various Monte Carlo techniques are used.

finding is extremely simple because the geometric prOblenACKNOWLEDGMENT
stated in Parallel Rotation can be solved analytically. Conse-

quently the ParRot technique proved to be computationally ~We gratefully acknowledge the financial support pro-
very efficient. vided by the Swiss National Science Foundati®thweiz-

Furthermore the ParRot technique can be used for polyerischer Nationalfonds zur Faerung der Wissenschaftlichen

mer chains of arbitrary chemical structure. Since ParRot conForschung
siders four consecutive dihedral angles without attention to
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