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Physically Based Shape Matching
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Figure 1: Our method allows the direct simulation of a cut-cell mesh comprised of arbitrarily shaped elements. The simulation mesh matches
the input surface mesh perfectly. Even at low resolution, the lion fish deforms in a plausible way.

Abstract
The shape matching method is a popular approach to simulate deformable objects in interactive applications due to its stability
and simplicity. An important feature is that there is no need for a mesh since the method works on arbitrary local groups within a
set of particles. A major drawback of shape matching is the fact that it is geometrically motivated and not derived from physical
principles which makes calibration difficult. The fact that the method does not conserve volume can yield visual artifacts, e.g.
when a tire is compressed but does not bulge.
In this paper we present a new meshless simulation method that is related to shape matching but derived from continuous
constitutive models. Volume conservation and stiffness can be specified with physical parameters. Further, if the elements of a
tetrahedral mesh are used as groups, our method perfectly reproduces FEM based simulations.

Keywords: finite element method, physically-based animation, elasticity, real-time physics
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1. Introduction

Simulating deformable objects has a long history in computer
graphics. Applications are flesh simulations on characters or rub-
bery objects like tires. A large variety of methods have been pro-
posed in this field. Many of those methods are mesh-based mean-
ing the simulation is performed on a volumetric mesh enclosing
an object. Since creating such a mesh is a difficult problem, mesh
generation is a large field in itself.

Meshless methods have been introduced to avoid this prob-
lem. Here, objects are typically sampled by particles. The particles
are held together by constraints or forces acting on local particle
groups. Other than not requiring a mesh, they have a number of ad-
ditional advantages. For instance, topological changes can be han-
dled by simply including or excluding particles from groups. When
large plastic deformations occur, objects can be re-sampled easily
and the groups re-created based on particle distances.

Mass spring networks are a simple example. Here, the interac-
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tions of the particles are modeled with springs. A difficulty of this
method is its dependency on the tessellation of the simulation mesh.
Also, the stiffnesses of the springs have to be tuned to get desired
overall behavior. The main problem with the method is the fact that
objects do not recover from inverted states.

Müller et al. [MHTG05] introduced a meshless simulation
method based on shape matching to solve this problem. Besides
resolving inversions, as a position based method it is uncondition-
ally stable. A major drawback of the approach is that it is based on
a geometric constraint and not derived from the discretization of
a continuous model. The method does not conserve volume which
means, when an object is stretched, it does not contract in the or-
thogonal directions. It is also difficult to specify an elastic modulus
that yields a desired behavior.

The goal of this project was to find a method that is as simple
and robust as shape matching but derived from physical principles.
Shape matching is a positional constraint. We also use positional
constraints but derive them from energy terms of existing models
as proposed by Macklin et al. [MM21]. As Macklin et al. we use
the extended position based dynamics method (XPBD) to handle
constraints which yields an unconditionally stable simulation that
can be implemented with a few lines of code.

While Macklin et al. demonstrate their method using a Neo-
Hookean model, we show that the approach works for other consti-
tutive models as well. To do this, we formulate the Hookean model
as a single positional constraint.

Using an arbitrary number of particles per element introduces
so-called zero-energy modes, motions of particles that go unno-
ticed by the model and yield bad visual artifacts. In [KBFF∗21],
Kugelstadt et al. suppress zero energy modes by introducing an ad-
ditional energy term. In addition to being non-physical, their stiff
penalty term introduces numerical challenges. In contrast, we use a
projection step similar to shape matching to filter out these modes.
In summary, our contributions are

• a physically based simulation method that can handle arbitrary
groups of particles as elements,

• formulating the Hookean model with a single position based
constraint and

• a simple and stable way to filter zero-energy modes.

2. Related Work

The simulation of deformable solids has been a subject of exten-
sive research in computer graphics for the last few decades. An
overview of research in this area up to 2005 and an explanation
of the underlying principles can be found in [NMK∗06]. Kim and
Eberle provide a more recent survey of the field in their Siggraph
course notes [KE20].

The Finite Element Method (FEM) is one of the most popular
methods used for the simulation of soft bodies in computer graph-
ics [BWHT07, KMBG08, WJST15]. As we already mentioned, a
major challenge here is to generate a consistent volumetric mesh,
typically tetrahedral or hexahedral.

Point based methods or meshless methods solve this problem.

Currently, the most popular method in computer graphics is the
Material Point Method (MPM) [Jia, HFG∗18, WCL∗20, WDG∗19,
DHW∗19]. It is a hybrid method in that it samples the quantities,
stored on particles to a regular background grid, solves the equa-
tions on the grid and samples the resulting field on the particles.

Shape matching [MHTG05] is a position based method. An
overview of position based dynamics (PBD) can be found in
[BMM17]. Extended position based dynamics (XPBD) [MMC16]
is a key improvement over the original method as it introduces the
concept of physical stiffness which is independent of time step size
and iteration count. Macklin and Müller [MM21] showed that con-
tinuous models such as the Neo-Hookean model [SGK18] can be
formulated as constraints in the XPBD framework which we use to
make shape matching physically based.

Shape matching has been extended in various ways before e.g.
to simulate ductile fracture [JML∗16] to handle large plastic de-
formation using cluster resampling [FJL∗17], [CMM16]. These
extensions are orthogonal to our work and will benefit from a phys-
ically based variant.

3. Method

3.1. Constrained Based Formulation

We use the extended position based dynamics framework (XPBD)
for simulation. Here, energies are replaced by compliant con-
straints. Each constraint is associated with a scalar compliance pa-
rameter α which is the inverse of physical time-step-independent
stiffness. Infinitely stiff materials can be handled stably by setting
the compliance to zero. While the actual stiffness of objects still de-
pends on solver convergence, the method does not require stiffness
tuning and does not have instabilities near or at the inextensible or
incompressible state.

Macklin and Müller [MM21], showed how a Neo-Hookean
model can be reproduced one to one in the XPBD framework us-
ing two positional constraints. In the following section we state the
derivation of their method to make this paper self-contained.

3.2. Neo-Hookean Model

For the Neo-Hookean model with the potential energy density

ΨNeo = λ

2 (det(F)− γ)2 + µ
2

(
tr(FT F)−3

)
(1)

= ΨH +ΨD, (2)

the hydrostatic energy density ΨH and the deviatoric energy density
ΨD can be replaced by the two constraints for each element in a
mesh

CH(F) = det(F)− γ and (3)

CD(F) =
√

tr(FT F), (4)

with corresponding compliance parameters

αH = 1
λVe

and (5)

αD = 1
µVe

. (6)

Here, F is the deformation gradient, λ and µ the Lamé parameters
and Ve the volume of a finite element of a mesh. In the original
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Neo-Hookean model γ is 1. To make the model rest stable, Smith
et al. [SGK18] proposed to set γ = 1+ µ

λ
. Constraints are defined

via scalar constraint functions C which are zero iff the constraint is
satisfied.

The equivalency can be proved by considering the relation of en-
ergies and constraints in the XPBD approach. The XPBD constraint
projection is derived from a constraint based energy potential

U(x) = 1
2

α
−1C(x)2 (7)

where the compliance α is the inverse of stiffness. If we substitute
the general constraint function C and compliance parameter α in
Equation (7) with the specific Neo-Hookean quantities defined in
Equations (3) - (6), we recover the original Neo-Hookean energy
potentials without the constant term -3 on the very right. However,
subtracting a constant from an energy does not change the resulting
forces.

The energy ΨNeo in Equation (2) is an energy density while U(x)
in Equation (7) is a regular energy. If we consider F to be constant
within an element then integrating the energy density over the el-
ement amounts to a multiplication with the element’s volume Ve.
This is the reason why Ve appears in Equations (5) and (6).

3.3. Hookean Model

In addition to the Neo-Hookean model, we will derive the
constraint functions for a Hookean model as well. Ben-
der et al. [BKCW14] derived a constraint function for the Hookean
model within the original PBD framework. While their constraint
drives elements towards their rest shapes, the constraint based
model is not equivalent to the original model. First we follow Ben-
der et al. and compute strains from the deformation gradient using
the Green-Lagrange strain tensor

ε =
1
2

(
FT F− I

)
, (8)

where I denotes the identity matrix. Next we apply Hooke’s law to
compute stresses from strains as

S = Cε, (9)

where C is the fourth order elasticity tensor. The scalar elastic en-
ergy density due to the deformation is given by

W =
1
2

ε : S =
1
2

ε : Cε, (10)

with the inner product A : B = ∑i, j ai, jbi, j .

Bender et al. now define the constraint function to be
CHooke(F) =W (F) which is satisfied when the deformation energy
is zero. To introduce stiffness, they use the non-physical method of
PBD which simply scales the correction vectors.

We will now describe how we solve this problem.To get match-
ing forces, we need a relation of the elastic modulus E and the
compliance parameter α used in XPBD. An important observation
is that E can be factored out of the energy so we can write W = E Ŵ
with Ŵ = W |E=1 (see Appendix 6.1). If we now define the con-
straint function

CHooke(F) =
√

2Ŵ (F). (11)

and use the compliance

α =
1

E Ve
, (12)

we match the original Hookean model. This can be seen by substi-
tuting the constraint function and compliance parameter in Equa-
tion (7). We parametrized the Hookean model using Young’s mod-
ulus and the Poisson ratio. However, other pairs of parameters can
be used such as the the Lamé parameters in the Neo-Hookean case.
We chose the former possibility because we believe that it is sim-
pler and more intuitive to tune.

3.4. Meshless Discretization

We represent an object as a set of particles with positions xi and
a set of local particle groups which are the equivalents of the ele-
ments in a mesh. The core of a discretization is the estimation of
the deformation gradient F based on the particle positions xi in a
meshless approach or the nodal positions in a mesh based approach.

For a tetrahedron with four nodal positions, the deformation gra-
dient is uniquely defined. However, for an arbitrary number of
particles in a group, the definition is not unique anymore. With
more than four points in a group, the problem of finding F is over-
constrained. For this reason, a least squares fit is typically applied.
We select the one used in shape matching [MHTG05] where F is
defined as

F =

(
n

∑
i=1

mirir̄T
i

)(
n

∑
i=1

mir̄ir̄T
i

)−1

= PQ−1, (13)

where n is the number of particles in the set, ri = xi− xcm, r̄i =
x̄i− x̄cm. The center of mass is computed as

xcm =
∑

n
i=1 mixi

∑
n
i=1 mi

(14)

and analogous for x̄cm. For a fixed connectivity, the rest quantities
Q−1 and x̄cm are constant and can be pre-computed.

If we plug our definition of F into the constraint functions de-
fined in the previous sections, we get constraints on the positions
of the particles within a group.

To derive the compliance α via Equations (5) and (6), we need
an estimation for the volume represented by the group. For a reg-
ular sampling, dividing the volume of the object by the number of
groups is a good estimate. In a more general setting one could use
the volume of a sphere of radius r̄ = ∑

n
i=1 |r̄i|/n. If there is one

group per particle, another possibility is to compute the density ρi
at each particle using a normalized kernel as in [MKN∗04] and
define the volume Vi of the group associated with particle i to be
mi/ρi.

We used yet another approach for the simulation shown in Fig. 1.
We cut the volume defined by the input mesh geometrically using a
regular grid as stencil. The resulting cut-cell mesh has regular hex-
cells in the interior and arbitrarily shaped cells on the boundary.
The boundary cells are defined by the clipped part of the original
surface that lies inside the corresponding cell and the clipped parts
of the faces of the regular mesh lying inside the cell. This way
the boundary cells perfectly match the volume defined by the input
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surface mesh. We then turn all the vertices of the original input
surface as well as all the vertices created by the clipping process
into particles.

The clipping can yield multiple disconnected volumes per
boundary cell. We create one group for each disconnected piece
and one group for each interior cell using all vertices of the clipped
mesh lying inside the cell as adjacent particles. In this case, the vol-
ume of the groups can be computed precisely using the surface of
each cell.

3.5. Filtering Zero-Energy Modes

Simulating objects solely with the constraints described above
yields disturbing artifacts. Particles can move freely in an uncon-
strained way causing an object to deform in arbitrary ways to ran-
dom chaotic shapes.

The reason is that if there are more than four particles in a group,
the group has more degrees of freedom than the deformation gra-
dient given by Equation (13). In other words, there are sub-spaces
of particle configurations that yield the same deformation gradient.
Therefore, our constraints cannot distinguish between configura-
tions of the same subspace and the particles can move freely within
them. These motions which are invisible to the energy computation
are called zero-energy modes.

This is an important problem that also appears in hybrid particle
methods that use a background grid because the particles represent
more degrees of freedom than the grid cells. FLIP [ZB05] which is
the predecessor of MPM is a hybrid method that introduces zero-
energy modes. The reason is that there are many arrangements of
particle velocities that, when sampled on the grid, are divergence
free on the grid. Since FLIP only computes velocity corrections,
the zero-energy motions remain. This problem is usually reduced
by using a hybrid FLIP - PIC method because PIC removes all
zero-energy modes. The same is true for traditional MPM. It hap-
pens when quantities of the particles are overwritten by smoothed
values interpolated from the grid cells. Going to the grid and back
smoothes out all the additional degrees of freedom of the particles.

We carry this idea over to the grid-less method as follows: as an
additional step of constraint projection, we re-compute F and xcm
using Equations (13) and (14) respectively which now reflect the
application of the material model. Then we replace the positions of
all particles in a group as

xi← xcm +Fr̄i. (15)

In the case of a tetrahedron or four particles, this update does
not change the particle positions. In the over-constrained configu-
ration however, it replaces the particle positions with the configu-
ration matching F that is closest to the rest state modulo rotation
and translation. This step replaces the shape-matching projection
step but uses a physically derived deformation gradient instead of a
rotation matrix.

3.6. Algorithm

Algorithm 1 shows the single iteration XPBD simulation loop. We
run s substeps in each simulation step. Within each substep we per-

Algorithm 1: XPBD solver

while simulating do
h← ∆t/numSubsteps;
for s substeps do

for n particles do
xprev← x;
v← v+h fext/m;
x← x+hv;

end
for all groups g do

project(g,x1, . . . ,xng );
end
for n particles do

v← (x−xprev)/h;
end
for all groups g do

applyDamping(g,v1, . . . ,vng );
end

end
end

form the particle prediction, a single solver iteration and the ve-
locity update of XPBD. To simulate damping, we iterate through
all groups again and modify the updated velocities as described in
section 3.7.

It might seem that a single solver iteration would yield an inac-
curate simulation. However, in [MSL∗19] the authors showed that
for a fixed computation budget per time step b = s · n, where s is
the number of substeps and n the number of solver iterations per
substep, s = b and n = 1 yields the most accurate result and con-
verges fastest. It also resolves the most temporal detail and intro-
duces the smallest amount of damping. A large number of itera-
tions might solve the implicit equations more accurately. However,
even the analytic solution of an implicit integration scheme is just
an approximation of the analytic trajectory which becomes worse
with increasing time step size. In other words it is better to solve
more accurate equations approximately than one inaccurate equa-
tion close to convergence.

The projection function project(g,x1, . . . ,xng ) referred to in Al-
gorithm 1 applies positional corrections to the particles of a group g
in order to solve the group constraint. Based on XPBD, a Lagrange
multiplier λ per group is computed as

λ =
−C(x)

∑
n
i=1 wi|∇xiC(x)|2 +α/h2 , (16)

where h is the substep size, α the compliance (inverse stiffness) we
discussed in the previous section, the wi the inverse masses of the
particles and x the concatenation of the positions of the particles in
the group. The numerator, i.e. the negative value of the constraint
function, can be computed by first computing the deformation gra-
dient F using Equation (13) and then evaluating the constraint func-
tions defined in terms of F. In the denominator, the gradients of the
constraint functions with respect to the particle positions are needed
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as well. Fortunately, they turn out to be quite simple expressions.
With F = [f1, f2, f3] they evaluate to

∇xiCH(x) = mi[f2× f3, f3× f1, f1× f2]Q−T r̄i, (17)

∇xiCD(x) = mi
r [f1, f2, f3]Q−T r̄i, and (18)

∇xiCHooke(x) = mi
CHooke(x) SFQ−T r̄i, (19)

where r =
√
|f1|2 + |f2|2 + |f3|2. The matrix Q is defined in Equa-

tions (13). Once the per-group multiplier λ is known, we can com-
pute the individual updates for the particles contained in the group
as

xi← xi +λwi∇xiC(x). (20)

The sequential version of XPBD applies projections immediately to
each group before proceeding to the next corresponding to the non-
linear Gauss-Seidel method. It is more stable then methods which
ignore updates of adjacent groups because it prevents overshoot-
ing but it makes the simulation dependent on constraint ordering.
Randomizing the order but keeping it constant throughout the sim-
ulation prevents potential artifacts.

3.7. Damping

Damping is applied during a velocity pass after the posi-
tion solve in Algorithm 1. We use the method proposed by
Müller et al. [MHR06] which is shown in Algorithm 2.

Algorithm 2: ApplyDamping
xcm← (∑i ximi)/(∑i mi);
vcm← (∑i vimi)/(∑i mi);
L← ∑i (ri× (mivi));

I← ∑i

(
RiRT

i mi

)
;

ω← I−1L;
for all particles i do

v̄i← vcm +ω× ri
vi← vi +min(c∆t,1)(v̄i−vi)

end

Here ri = xi− xcm, Ri the matrix for which Riv = ri× v and
c the damping coefficient. We use the fact that a fully damped
group of connected particles moves like a rigid body with veloc-
ity (vcm,ω). The individual velocities of the particles are driven
toward the global motion in a time step independent way using the
damping coefficient c. XPBD allows clamping the correction to not
overshoot making the simulation stable for arbitrary values of c.

4. Results

We ran all our tests on a single thread of a Core-i7-9700K CPU
at 3.6 GHz. Parallelizing our method is straight forward using a
Jacobi-style solver as described in [BMM17].

As a first experiment we stretched a bar. The bar is composed
of hexahedral elements with randomized shapes. The result of the
experiment is shown in Figure 2. The blue bar on the left shows

Figure 2: Stretching experiment. From left to right: Shape Match-
ing, Neo-Hookean, Hookean (ν = 0.49) and Hookean (ν = 0.0).

Figure 3: Twisting experiment: The Neo-Hookean model is the
most stable among the four. It keeps the correct shape while the
other three blocks collapse.

that shape matching does not conserve volume because it does not
generate orthogonal forces. To simulate the green bar we used the
Neo-Hookean model. The bar shows the characteristic shape of a
volume conserving hyperelastic material. The volume is conserved
within 3 percent. The red bars are simulated using the Hookean
model with a Poisson ratio of 0.49 and 0.0. The left bar shows that
the Hookean model overcompensates volume conservation. This
artifact is a result of the way volume conservation is modelled as
off-diagonal entries in the constitutive matrix which is an approxi-
mation valid for small deformations only.

Choosing a Poisson ratio of 0.0 matches the behavior of shape
matching. The simulation of all bars takes 170 milliseconds per
frame. We used 1700 elements and 2300 particles per bar.
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Figure 4: The simulation of thin layers with user interaction
demonstrates the stability of the position based formulation.

In the second experiment shown in Figure 3 we twisted the bar
by 270 degrees. Shape matching as well as the Neo-Hookean model
handle this scenario well. The Neo-Hookean model produces a
slightly smoother shape. The Hookean model fails because it does
not generate forces that restore inverted elements. Here we used
1400 elements and 1800 particles per bar which resulted in 140
milliseconds per frame.

Figure 4 shows an experiment in which we created thin shells.
No matter how fast the user drags them, the simulation remains sta-
ble due to the fact that we use a position based compliant formula-
tion. The sheets are composed of 1060 elements and 2300 particles.
This simulation runs at 100 milliseconds per frame.

For the simulation shown in Figure 1 we used a cut-cell mesh
as described in Section 3.4. There is one particle group for each
disconnected cell. We compute the masses of the particles by dis-
tributing the masses of the cells evenly among the adjacent parti-
cles. The mass of a cell can be computed by multiplying the ele-
ment’s volume with the density of the object. For this demo, we
cut the surface mesh with 20k triangles into 840 cells. The result-
ing simulation mesh perfectly matches the input surface. For the
simulation we applied the Neo-Hookean material model. This sim-
ulation takes 82 milliseconds per frame. The mesh shown on the
right of Figure 1 shows a lower resolution mesh of only 195 cells.
Even at this low resolution, the simulation still creates a plausible
behavior. The speed of the simulation is comparable to the higher
resolution case because each individual cell has now a larger num-
ber of adjacent particles.

5. Conclusion and Future Work

We have presented a mesh-less method to simulate elastic solids.
It resembles shape matching but is derived from physical princi-
ples. We demonstrated the approach using a Hookean and a Neo-
Hookean constitutive model.

The linear filter to remove the zero-energy modes introduces so-
called shear locking . The resulting artifact only shows for rather
soft objects which exhibit large deformations. A way to fix this
problem would be to use non-linear shape matching as discussed in
the original shape matching paper [MHTG05]. The cut-cell mesh

we use perfectly matches the input mesh. However, often, an ap-
proximate mesh is sufficient for simulation. Therefore we are look-
ing into ways to simplify the cells while keeping the mesh consis-
tent. Another line of research will be to investigate the application
of our method to objects under large plastic deformation or tearing
and cutting.

6. Appendix

6.1. Hookean Constitutive Matrix

For isotropic materials and if the stress and strain tensors are writ-
ten as one dimensional vectors

ε = [εxx,εyy,εzz,εxy,εyz,εzx]
T and (21)

σ = [σxx,σyy,σzz,σxy,σyz,σzx]
T , (22)

the fourth order constitutive matrix of a Hookean model can be
written as a regular matrix

C=
E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν

 ,
(23)

where E is Young’s modulus, ν the Poisson ratio and σ = Cε. As
Equation (23) shows, Young’s modulus E can be factored out and
interpreted as a stiffness parameter such that σ = E Ĉε, where Ĉ =
C|E=1.

6.2. Implementation Notes

The entries of the two matrices in P and Q Equation (13) might get
very small for dense samplings. For the inversion of Q, the deter-
minant has to be computed which is even smaller and might fall
out of the range of single precision floating point numbers. To fix
this problem, we compute a normalization number s= 1/

(
∑i, j qi j

)
,

where the qi j are the entries of Q. We then multiply Q by this num-
ber before inversion. In this case, P as well as all the gradients have
to be multiplied by s as well.
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