
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2011)
J. Bender, K. Erleben, and E. Galin (Editors)

SPH Based Shallow Water Simulation

Barbara Solenthaler1 Peter Bucher1 Nuttapong Chentanez2 Matthias Müller2 Markus Gross1

1ETH Zurich 2NVIDIA PhysX Research

Abstract
We present an efficient method that uses particles to solve the 2D shallow water equations. These equations
describe the dynamics of a body of water represented by a height field. Instead of storing the surface heights using
uniform grid cells, we discretize the fluid with 2D SPH particles and compute the height according to the density
at each particle location. The particle discretization offers the benefits that it simplifies the use of sparsely filled
domains and arbitrary boundary geometry. Our solver can handle terrain slopes and supports two-way coupling
of the particle-based height field with rigid objects. An improved surface definition is presented that reduces visible
bumps related to the underlying particle representation. It furthermore smoothes areas with separating particles to
achieve better rendering results. Both the physics and the rendering are implemented on modern GPUs resulting
in interactive performances in all our presented examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation and Virtual Reality

1. Introduction

Physically-based simulations have become an important el-
ement of real-time applications like computer games. This
is because they increase the plausibility of the simulated
materials and give the user the ability to realistically inter-
act with the environment. Until now, physical simulations
have largely been limited to solid bodies; other materials
like fluids have been used with reservation since they pose
high computational and methodological challenges to a real-
time application. The reason for this is that high-resolution
simulations require millions of grid cells or particles with
a full 3D Eulerian or Lagrangian fluid simulation, respec-
tively. Real-time applications typically reduce the simulated
domain from a 3D volume to a 2D surface to reduce the com-
putational costs. A popular approach are height field fluids
where the domain is discretized by 2D grid cells that store
the height of the surface at the respective location. A simple
technique to simulate surface phenomena like puddles and
waves is to solve the wave equation. This approach, how-
ever, does not handle bulk flow in the horizontal direction,
and therefore effects like swirling rivers and floating objects
cannot be simulated correctly. The shallow water equations
(SWE) overcome this problem by incorporating a 2D veloc-
ity field normal to the water columns.

The Eulerian domain decomposition has been widely used

in height field methods as well as in full 3D simulations.
The grid discretization allows for efficient simulations, but
handling irregular domain boundaries that are not aligned
with the grid accurately and robustly is difficult. Moreover,
the grid structure is not well suited to simulate sparse do-
mains and water flowing into empty regions. Such effects,
however, increase the realism of a virtual world and offer
the ability to flexibly interact with the surrounding. In con-
trast to the domain decomposition of Eulerian models, the
Lagrangian methods discretize the fluid volume by particles
that can move to arbitrary locations. Recently, particles have
been successfully used in SWE simulations in [LH10]. Lee
and Han applied the SPH model to solve the SWE equations,
including a one-way coupling of fluids with simple geome-
tries represented by virtual particles.

In this paper, we extend the particle-based SWE model
of Lee and Han [LH10] in order to fully benefit from the
advantages of the Lagrangian nature. The main contributions
of this paper are:

• Extensions of the basic particle-based SWE method that
allow the simulation of arbitrary domain boundaries and
terrain slopes.

• A two-way coupling of the particle-based fluid with rigid
bodies, including buoyancy, drag and lift forces.

• A surface representation based on the underlying density

c© The Eurographics Association 2011.

B. Solenthaler et al. / SPH Based Shallow Water Simulation

field that improves the rendering of low density particle
regions.

We further present a detailed derivation of the particle-based
SWE equations using 2D SPH particles.

2. Related Work

3D simulations of water are well studied in the literature
and are used to model complex flow patterns like vortex
structures and breaking waves. These simulations come at
high costs because they typically require a high-resolution
discretization, i.e., millions of cells or particles, to repro-
duce small-scale effects. There are many works on full 3D
simulation of water, a detailed introduction can be found
in [Bri08] for Eulerian simulations and [Mon05] for La-
grangian solvers.

A common practice to reduce the simulation costs of
full 3D simulations while still being able to resolve highly
detailed surface features is to reduce the simulation do-
main from 3D to 2D. Procedural methods have been used
in e.g. [FR86, TDG00, HNC02] to describe ocean waves.
These methods do not solve physical models but rather use
parametric functions and mathematical descriptions to com-
pute the velocity field locally. Procedural models can handle
large-scale animations efficiently, however, the simulation of
vortices and object interaction is challenging. The first works
in computer graphics that simulated the water surface by
solving the wave equation on a 2D height field are [KM90,
Tes99]. The model has been extended to simulate rigid
body interaction [OH95], bubbles and droplets [MY97], wa-
terfalls [HW04], and terrain erosion [vBBK08]. Recently,
[YHK07] introduced a method where 2D particles carrying
the velocity and wavefront information are dynamically gen-
erated and removed at the surface. The main limitation of the
wave equation model is that effects from vortices are not in-
cluded, preventing the simulation of whirlpool effects and
correct advection of floating objects.

In contrast to the wave equation model, the Shallow Wa-
ter Equations (SWE) [LVDP02] include a 2D velocity field
in addition to the surface height. The equations are derived
from the Navier-Stokes equations and describe conservation
of mass and momentum. The SWE method has been ex-
tended to resolve breaking waves in [TMFSG07] by generat-
ing and evolving triangle mesh patches, as well as in [CM10]
where particles are dynamically added on top of steep and
fast moving wavefronts. The latter work has additionally in-
cluded spray and foam particles to simulate waterfalls and
object interaction more realistically. The difficulty of mod-
eling complex boundaries with regular grid approaches has
been addressed in [HHL∗05] where a finite volume method
is used to solve the SWE.

A particle representation, on the other hand, overcomes
these limitations since particles can move to arbitrary lo-
cations and can separate from the main body of fluid. In

computational fluid dynamics, the particle model Smoothed
Particle Hydrodynamics (SPH) has been used to solve the
SWE equations to analyze dam breaks and flood hazards.
In [AS05], SPH for shallow water simulation has been used
on a flat terrain, and stability has been improved by introduc-
ing an additional diffusive term. [RPB05] augmented SPH
to also store the water depth to reduce the number of parti-
cles required in deep water, at the expense of non-constant
kernel radii. Anisotropic SPH kernels with variable smooth-
ing length are used in [dLTA08] to obtain more numerical
accuracy when water spreads out. The particle-based shal-
low water method has been introduced to computer graph-
ics in [LH10]. Lee and Han have included a one-way cou-
pling of particles with solid objects, where the objects are
represented by ghost (virtual) particles. Our work is based
on the basic concept presented in Lee and Han, but we ad-
ditionally include arbitrary terrain boundaries and two-way
fluid-solid interaction to make better use of the benefits of
the Lagrangian nature.

3. Basic Models

Our method solves the shallow water equations on 2D SPH
particles. In the following, we give a brief overview of the
basic SWE and SPH equations. For detailed derivations and
descriptions of both models we refer the reader to [Bri05]
for SWE and [DC96, Mon05] for SPH.

3.1. Shallow Water Equations

The shallow water equations are derived from the Navier-
Stokes equations to describe the evolution of the liquid sur-
face given by a 2D height field. They represent conservation
of volume and momentum and can be written as

Dh
Dt

=−h ∇ ·u (1)

Du
Dt

=−g∇(h+H)+aext, (2)

where h is the height of the water above ground, u is the
2D horizontal water velocity and g is gravity. In addition
to [LH10], we include the height of the terrain H and ex-
ternal accelerations aext. For particles moving with the fluid,
the material derivative D/Dt turns into the simple derivative
d/dt.

3.2. 2D SPH

According to SPH, a scalar quantity A of a particle i is inter-
polated by a weighted sum of contributions from all neigh-
boring particles j:

Ai = ∑
j

m j

ρ j
A jW (ri− r j, l), (3)

where r is the particle position, ρ j the density of j and
W (r, l) the smoothing kernel with finite support l. Differ-

c© The Eurographics Association 2011.

B. Solenthaler et al. / SPH Based Shallow Water Simulation

ential operators act on the kernels only and are

∇Ai = ∑
j

m j

ρ j
A j∇W (r− r j, l) (4)

∇
2Ai = ∑

j

m j

ρ j
A j∇

2W (r− r j, l) (5)

∇ ·Ai = ∑
j

m j

ρ j
A j ·∇W (r− r j, l). (6)

We use the same kernels as presented for the 3D case
in [MCG03] but adapted to 2D:

Wpoly6(r, l) =
4

πl8

{
(l2− r2)3 0≤ r ≤ l
0 otherwise

(7)

Wspiky(r, l) =
10
πl5

{
(l− r)3 0≤ r ≤ l
0 otherwise,

(8)

Wviscosity(r, l) =
10

9πl5 (9){
−4r3 +9r2l−5l3 +6l3(ln l− lnr) 0≤ r ≤ l
0 otherwise.

The Laplacian of the first two kernels is not positive every-
where which can cause stability issues, thus we use the third
kernel for computing the viscosity term. We designed the
viscosity kernel such that

∇
2W (r, l) =

40
πl5 (l− r) (10)

W (|r|= l, l) = 0 (11)

∇W (|r|= l, l) = 0. (12)

We used Equation (9) to determine the correct scaling factor
in Equation (10). During the simulation, only the Laplacian
of Equation (9) is evaluated. The derivation of the kernel
properties is given in Appendix A.

4. Particle-Based SWE Model

Our SWE solver uses 2D particles to discretize the surface of
a fluid, as shown in Figure 1. In Section 4.1, we first derive
the Lagrangian shallow water equations in detail and show
how they can be solved with SPH. We then explain in Sec-
tion 4.2 how arbitrary terrains and water heights can be inte-
grated, and show our two-way coupling of the particle-based
fluid with rigid objects in Section 4.3. Section 4.4 then dis-
cusses how the surface definition and rendering can be im-
proved by addressing the problems coming with the particle
representation.

4.1. Particle-Based SWE Equations

Our aim is to solve Equations (1) and (2) using 2D SPH par-
ticles attached to the ground. In this case, the horizontal 2D
velocity field is defined by the velocities of the particles as

Figure 1: The particle representation facilitates the inter-
action with complex and unbounded geometries. The fluid
surface is defined by the particles (left) and is rendered in
real-time (right).

in regular 2D SPH simulations. A straightforward approach
would be to store the scalar water height h as an additional
attribute on the particles. In this case, one would evaluate
the divergence and gradient of the water height appearing in
the SWE with the corresponding SPH approximations. The
main problem with this simple approach is the right hand
side of Equation (2). Imagine two or more particles which
store the same height approaching each other. There is no
repulsive force between them because the gradient of the
height is zero so they can get arbitrarily close to each other.
To get good sampling, additional forces would have to be
added or the particles would have to be repositioned directly.

We solve that problem in a simple way as proposed
in [RPB05]. The idea is to define the height implicitly via
the 2D density of the fluid:

h =
ρ2D

ρ3D . (13)

Assuming the 3D density of the water to be constant, the two
quantities are proportional via the constant of proportional-
ity 1

ρ3D . In the remainder of the paper we will use ρ = ρ2D

and ρ0 = ρ3D. With constant particle masses and normalized
kernels, volume conservation is free in this formulation be-
cause the integral of the density (height) field over the 2D
domain is constant:

V =
∫

Ω

h dr =
∫

Ω

1
ρ0

ρ dr

=
1
ρ0

∫
Ω

∑
j

(
m jW (r− r j)

)
dr

=
1
ρ0

∑
j

m j

∫
Ω

W (r− r j) dr

=
1
ρ0

∑
j

m j = const.

This means that the weak form of Equation (1) holds auto-
matically and we do not lose water globally. To guarantee
volume conservation locally, the strong form must also hold.

c© The Eurographics Association 2011.

B. Solenthaler et al. / SPH Based Shallow Water Simulation

This is only true in the limit:

∂

∂ t
ρi =

∂

∂ t

(
∑

j
m jW (ri(t)− r j(t))

)

= ∑
j

m j
∂

∂ t
W (ri(t)− r j(t))

= ∑
j

m j∇W (ri− r j) · (ui−u j)

= ui ·∑
j

m j
ρ j

ρ j
∇W (ri− r j)

−∑
j

m j
ρ j u j

ρ j
·∇W (ri− r j).

Using Equations (4) and (6) and with the kernel size ap-
proaching zero we get:

∂

∂ t
ρi = u ·∇ρ−∇ · (ρu)

= u ·∇ρ− (∇ρ ·u+ρ∇ ·u)
= ρ∇ ·u

and with h = 1
ρ0

ρ

∂

∂ t
hi = h∇ ·u

which is Equation (1). Since ρi is defined on the particle, the
left hand side above corresponds to the material derivative.
The momentum conservation Equation (2) becomes

Du
Dt

=−g∇(h+H)+aext (14)

=− g
ρ0

∇ρ−g∇H +aext. (15)

This equation is equal to the momentum conservation equa-
tion used in regular SPH with stiffness constant k = g

ρ0
and

with the additional external force −g∇H which acts along
the gradient of the terrain. In other words what we have to
do is to perform a regular 2D SPH fluid simulation and in-
terpret the density as height. The same technique has also
been applied in [LH10].

4.2. Arbitrary Domain Boundaries

We define the terrain by a height map, i.e. a scalar field where
each scalar denotes the height at discrete positions. The ex-
ternal terrain force

fterrain
i =−g∇Hi (16)

acts along the gradient of the terrain. We compute ∇H at
each discrete position of our height map with central dif-
ferences. This has to be computed only once when initially
loading the data. The gradient values are then bilinearly in-
terpolated at the particle positions.

Very steep and vertical domain boundaries can introduce
very large terrain forces. Thus, we use simple geometries to

represent the boundary in these cases, and replace the terrain
force by a boundary force repulsing a particle whose dis-
tance li to the boundary is less than b. We defined the force
as

fboundary
i = αi(fi ·n)n, (17)

where fi is the sum of all other forces acting on i and n is
the normal of the closest point on the boundary. αi is the
repulsion strength defined as

αi = c(1− li
b
), (18)

which is higher the smaller the distance is to the boundary. c
is a parameter to control the force intensity; in all our exam-
ples we used c = 0.15.

4.3. Rigid Body Interaction

Our method considers two-way coupled interaction of
particle-based height fields and rigid objects.

4.3.1. Fluid to Solids

The height field exerts three forces on a solid, namely buoy-
ancy, drag and lift forces. The buoyancy force fbuoyancy =
−gρV is proportional to the displaced mass of the fluid ρV
and is pointing upward. An object either floats on the surface
or sinks depending on its relative weight as shown in Fig-
ure 2. In order to determine the mass of the displaced fluid,
we have to compute the fraction of the water column above
the particle that is replaced by the solid. For each particle,
we cast a ray vertically upwards and compute its bottom-
and topmost intersection with the object’s surface di,min and
di,max. The immersion depth stored at particle i is defined as

di = min(di,max,h)−di,min. (19)

The minimum is used to distinguish whether the object is
floating or is fully immersed. The displaced mass is then
computed by m̂i = midi/hi, leading to the buoyancy force
per particle

fbuoyancy
i =−gm̂i. (20)

Drag and lift forces are computed analogously to [YHK07]
with

fdrag
i =−1

2
CDAeff

i |urel |urel , (21)

flift
i =−1

2
CLAeff

i |urel |(urel ×
n×urel

|n×urel |
) (22)

(23)

where CD and CL are drag and lift coefficients, n the surface
normal, and urel = uo− ui is the relative velocity between
the object and the fluid. Aeff

i is the effective area and can be
computed with

Aeff
i =

{
(n·urel

urel
αs +(1−αs))Ai n ·urel > 0

0 otherwise.
(24)

c© The Eurographics Association 2011.

B. Solenthaler et al. / SPH Based Shallow Water Simulation

Figure 2: Our two-way fluid-solid interaction produces re-
alistic waves and ripples at the surface. The left image shows
the particles, and the right image the resulting surface.

where αs depends on the geometry of the object [YHK07].
The area Ai represents the water column above a particle and
is defined by

Ai =
mi

ρ0hi
=

mi

ρi
. (25)

4.3.2. Solids to Fluid

In contrast to grid-based SWE methods, SPH-based SWE
does not allow to modify the height of the fluid due to solids
in a simple way. Modifying the height means that particles
have to be rearranged such that the resulting SPH densities
change accordingly. Since the SPH density computed by

ρi = mi ∑
j

W (r, l) (26)

directly depends on the number of neighbors and their posi-
tions, i.e. kernel values, small position changes can already
have a large effect on the computed quantity. Thus, we can-
not modify particle locations easily and without introducing
discontinuities. In the worst case, this can introduce large
pressure forces and instabilities.

We solve this problem by defining a collision force
fcollision based on an elastic collision between the particles
and the object. In a fully elastic collision, the new velocity
of a particle i is given by

u′i =
miui +mouo−mo(ui−uo)

mi +mo
, (27)

where mo is the mass of the immersed part of the object, and
uo is the velocity of the object at the collision point. The
collision force applied on a particle is therefore given by

fcollision
i = βmi

u′i−ui

∆t
. (28)

0 ≤ β ≤ 1 defines the influence of the object onto the parti-
cle. Note that a large value for β could push all particles be-
low the object away very quickly, preventing that any buoy-
ancy force acts on the object. Our experiments have shown
that a value of β = 0.15 produces visually appealing water
waves. The effect of the collision force is illustrated in Fig-
ure 3.

g

b

Figure 3: Our collision force moves the particles, produc-
ing higher density values and thus impact waves. Top: Side
view of an object impact. Bottom: Top view of a horizontally
moving object.

4.4. Surface Definition

We create a surface map s by combining a modified density
field ρ∗ from the particles with the underlying terrain:

s(r) =
ρ∗(r)

ρ0
+H(r). (29)

This surface map is then used as a vertex displacement map
to determine the vertex positions of the final surface mesh.

The simplest approach is to use the SPH density given by
Equation (26) for the rendering. This field, however, is un-
able to reconstruct a flat surface since bumps related to the
particle distribution are well visible. Normalization to allevi-
ate these problems cannot be applied because it would result
in a constant function ρ(r) = m. We therefore apply the ker-
nel smoothing concept to the discrete density (see Figure 4
(a)), which is

ρ(r) = ∑
j

ρ jW (r− r j, l), (30)

and normalize this field resulting in

ρ̂(r) =
ρ(r)

∑ j W (r− r j, l)
. (31)

The normalized field reduces surface bumps, but on the other
hand, artifacts at the surface borders are visible (see Figure 4
(b)). In order to get the best of both formulations, flat sur-
faces and smoothly declining borders, we smoothly interpo-
late between the unnormalized and the normalized density
fields given by Equations (30) and (31) (see Figure 4 (c)):

ρ
∗(r) = αρ̂(r)+(1−α)ρ(r), (32)

where α is determined by α =
ρ(r)−ρmin(r)

ρmax(r)−ρmin(r)
∈ [0..1], and

ρmin(r) and ρmax(r) are the minimal and maximal density
value in the neighborhood of r.

With the particle representation, water flowing into empty
regions can be simulated in a straightforward way. However,
in such cases it might happen that individual particles sepa-
rate and appear as large blobs in the rendered result as shown

c© The Eurographics Association 2011.

B. Solenthaler et al. / SPH Based Shallow Water Simulation

Figure 4: We smoothly interpolate between the unnormal-
ized (top) and normalized density field (middle) to get the
best of both formulations: Smoothly declining borders and
flat surfaces (bottom).

Figure 5: Particles that separate from the main flow are
rendered as large blobs. To improve the rendering in these
situations, we smooth the density field over a larger area.

in the left image in Figure 5. We solve this problem by de-
tecting such low density areas in the fluid and smoothing
the density field in these situations. This is achieved by in-
creasing the kernel size in Equations (30) and (31) with de-
creasing density. To this end, we have defined two density
thresholds, ρ1 = 30 and ρ2 = 150, in between the kernel ra-
dius l is increased linearly up to a maximum size which we
have set to 3l in all our examples. Note that variable kernel
sizes are only used for rendering. The effect is shown in the
right image of Figure 5.

5. Results and Discussion

We implement our method in CUDA and run the simula-
tions on a 2.66 GHz Core i7 and NVIDIA GTX 460. We
used NVIDIA’s PhysX SDK for the rigid body dynamics.
We have used two different setups to measure the perfor-
mance, the basin and the whirlpool scenarios shown in Fig-
ure 6. Table 1 lists the performance values of both exam-
ples with increasing particle numbers as well as increas-
ing number of rigid objects. We used a time step of 0.002s
in these examples. The timings are given in fps, once for
the physics computation only, and once including the ren-
dering after each physics step. The performance data show
that we can simulate and render 128k particles at an interac-
tive rate of 20fps. With the same number of particles but
adding 196 objects, the frame rate decreases to 7fps. We
note that the particle-based SWE formulation does not reach
the same performance as the grid-based SWE models. How-
ever, the particle-based approach offers many benefits over
grid-based solvers like the simple handling of complex and
sparsely filled domains. The choice of a particular solver
should therefore depend on the designated simulation scene
and application.

The benefits of the particle representation is demonstrated
in the following examples. In all of them, we achieved inter-
active performances. In Figure 7, the fluid is interacting with
non-axis aligned boundaries which a user dynamically re-
moves causing the water to flow out. The interaction with a
complex terrain boundary is shown in Figure 1 and 8. We
used height maps of sizes 512x512 and 256x256, respec-
tively. In the latter example, the solid objects get advected
by the river which is discretized by 100k particles in total.
Due to the chosen camera positions, however, only about
15k particles are visible in the particular screenshots. The
rigid objects either float or sink depending on their weight,
in both cases producing realistic waves and ripples. If not
stated otherwise, we used our real-time OpenGL renderer in
all our examples. The result of our real-time renderer is vi-
sually compared to the offline Povray raytracer in Figure 8.

One drawback of our method is that several parameters
have to be set, each of them influencing the visual result
of the simulation. While this offers a high degree of artis-
tic freedom to an animator, it can also be a tedious process
to achieve the desired result. We have determined the param-
eters once as stated in the corresponding sections, and used
these values to produce all our examples.

While our surface definition accounts for a smooth ren-
dering of low density regions, it would be desirable to con-
trol the actual number of particles in a certain region dy-
namically. This is mainly important in simulations with un-
bounded domains to guarantee a minimal particle sampling
rate. This could be achieved by locally adjusting the reso-
lution with particle splitting and merging processes, analo-
gously to the idea presented in [APKG07] for 3D SPH sim-
ulations. The problem is, however, to change the resolution

c© The Eurographics Association 2011.

B. Solenthaler et al. / SPH Based Shallow Water Simulation

Figure 6: The basin (left) and whirlpool (right) examples
are used to evaluate the performance of our method pre-
sented in Table 1.

Figure 6 #particles #objects physics [fps] physics + rendering [fps]

16k - 629 120

32k - 317 86
Basin (left) 64k - 131 55

128k - 41 20

16k 16 254 73

32k 36 144 39
Whirlpool (right) 64k 81 62 18

128k 196 21 7

Table 1: Performance values of two different examples,
measured for various particle and object numbers.

locally in a stable way, avoiding artifacts at the surface as
well as abrupt momentum changes.

6. Conclusions and Future Work

We have presented a new approach for simulating height
field fluids based on 2D SPH particles. Discretizing the
height field with particles offers many benefits over tradi-
tional grid-based approaches, namely the simple handling of
complex and sparsely filled domains. This allows the inter-
action of a user with the flow and the environment in a more
flexible way. Our surface representation is modeled so that
we avoid visual artifacts related to the underlying particle
distribution.

There are several ways to further improve the visual ap-
pearance of the fluid. First, splashes, foam and waterfall
effects could be modeled, for example by including sim-
ple particle systems as in [CM10]. And second, our method
could be extended to allow the dynamic insertion and dele-
tion of particles to guarantee a minimal particle sampling
rate. Dynamically changing the particle number in a stable
way is, however, a difficult task and needs further studies in
the future.

References
[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:

Adaptively sampled particle fluids. ACM Trans. Graph. (Pro-
ceedings of SIGGRAPH) 26, 3 (2007), 48–54. 6

[AS05] ATA R., SOULAIMANI A.: A stabilized SPH method for

Figure 7: Individual walls are dynamically removed by a
user, causing the fluid to flow into empty domain regions.

Figure 8: A dam built of several logs collapses, resulting
in the fluid and the debris to flow down the valley. An un-
bounded domain is used, and the particles can flow to ar-
bitrary locations. The bottom row shows different rendering
techniques; on the left the surface is rendered offline with
Povray, and on the right we used our real-time OpenGL ren-
derer.

inviscid shallow water flows. International Journal for Numeri-
cal Methods in Fluids 47 (2005), 139–159. 2

[Bri05] BRIDSON R.: Shallow water discretization, Lecture notes
Animation Physics, 2005. University of British Columbia. 2

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A K Peters, 2008. 2

[CM10] CHENTANEZ N., MÜLLER M.: Real-time simulation of
large bodies of water with small scale details. In Proceedings of
ACM SIGGRAPH / EUROGRAPHICS Symposium on Computer
Animation (2010). 2, 7

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. In 6th Euro-
graphics Workshop on Computer Animation and Simulation ’96
(1996), pp. 61–76. 2

[dLTA08] DE LEFFE M., TOUZÉ D. L., ALESSANDRINI B.: SPH

c© The Eurographics Association 2011.

B. Solenthaler et al. / SPH Based Shallow Water Simulation

modeling of shallow-water coastal flows. In Proceeding of the
8th International Conference on Hydrodynamics (2008). 2

[FR86] FOURNIER A., REEVES W. T.: A simple model of ocean
waves. In Proceedings of SIGGRAPH (1986), pp. 75–84. 2

[HHL∗05] HAGEN T., HJELMERVIK J., LIE K.-A., NATVIG J.,
HENRIKSEN M. O.: Visual simulation of shallow-water waves.
Simulation Modelling Practice and Theory 13, 8 (2005), 716 –
726. 2

[HNC02] HINSINGER D., NEYRET F., CANI M.-P.: Inter-
active animation of ocean waves. In Proceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2002), pp. 161–166. 2

[HW04] HOLMBERG N., WÜNSCHE B. C.: Efficient modeling
and rendering of turbulent water over natural terrain. In Proceed-
ings of GRAPHITE (2004), pp. 15–22. 2

[KM90] KASS M., MILLER G.: Rapid, stable fluid dynamics
for computer graphics. In Proceedings of SIGGRAPH (1990),
pp. 49–57. 2

[LH10] LEE H., HAN S.: Solving the shallow water equations
using 2d sph particles for interactive applications. The Visual
Computer 26, 6-8 (2010), 865–872. 1, 2, 4

[LVDP02] LAYTON A. T., VAN DE PANNE M.: A numerically
efficient and stable algorithm for animating water waves. The
Visual Computer 18 (2002), 41–53. 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the ACM Siggraph/Eurographics Symposium on Com-
puter Animation (2003), pp. 154–159. 3

[Mon05] MONAGHAN J. J.: Smoothed Particle Hydrodynamics.
Rep. Prog. Phys. 68 (2005), 1703–1759. 2

[MY97] MOULD D., YANG Y.-H.: Modeling water for computer
graphics. Computers & Graphics 21, 6 (1997), 801 – 814. 2

[OH95] O’BRIEN J. F., HODGINS J. K.: Dynamic simulation of
splashing fluids. In Proceedings of Computer Animation (1995),
pp. 198–205. 2

[RPB05] RODRIGUEZ-PAZ M., BONET J.: A corrected smooth
particle hydrodynamics formulation of the shallow-water equa-
tions. Comput. Struct. 83 (2005), 1396–1410. 2, 3

[TDG00] THON S., DISCHLER J.-M., GHAZANFARPOUR D.:
Ocean waves synthesis using a spectrum-based turbulence func-
tion. In Proceedings of CGI (2000), p. 65. 2

[Tes99] TESSENDORF J.: Simulating ocean water. SIGGRAPH
course notes (1999), 8. 2

[TMFSG07] THUREY N., MULLER-FISCHER M., SCHIRM S.,
GROSS M.: Real-time breaking waves for shallow water simula-
tions. In Proceedings of Pacific Conference on Computer Graph-
ics and Applications (2007), pp. 39–46. 2

[vBBK08] ŠT’AVA O., BENEŠ B., BRISBIN M., KŘIVÁNEK J.:
Interactive terrain modeling using hydraulic erosion. In Proceed-
ings of ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2008), pp. 201–210. 2

[YHK07] YUKSEL C., HOUSE D. H., KEYSER J.: Wave par-
ticles. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH) 26, 3 (2007), 99. 2, 4, 5

Appendix A: Derivation of the Viscosity Kernel Properties

In the following, the scaling factor in Equation (10) is
derived, satisfying the properties given in Equations (11)
and (12) as well as the unity constraint.

In polar coordinates and for symmetric functions, the
Laplacian is

∆ f =
1
r

∂

∂ r

(
r

∂ f
∂ r

)
(33)

So
∂ f
∂ r

=
10

9πl5

(
−12r2 +18lr−6l3 1

r

)
r

∂ f
∂ r

=
10

9πl5

(
−12r3 +18lr2−6l3

)
∂

∂ r

(
r

∂ f
∂ r

)
=

10
9πl5

(
−36r2 +36lr

)
1
r

∂

∂ r

(
r

∂ f
∂ r

)
=

10
9πl5 (−36r+36l)

∆ f =
40
πl5 (l− r)

and

f (l) =
10

9πl5

(
−4l3 +9l3−5l3 +6l3(ln l− ln l)

)
= 0

and
∂ f
∂ r

∣∣∣∣
l
=

10
9πl5

(
−12r2 +18lr−6l3 1

r

)∣∣∣∣
l

=
10

9πl5

(
−12l2 +18l2−6l2

)
= 0

and∫
r
Wviscosity(r, l)dr

=
∫ 2π

0

∫ l

0

10
9πl5

(
−4r3 +9r2l−5l3 +6l3(ln l− lnr)

)
r dr dφ

=
20π

9πl5

[
−4

5
r5 +

9
4

lr4− 5
2

l3r2 +6l3
(

1
2

r2 ln l− (
1
2

r2 lnr− 1
4

r2)

)]l

0

=
1

9l5

(
−16l5 +45l5−50l5 +6l3(5l2)

)
= 1

c© The Eurographics Association 2011.

