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ABSTRACT
We introduce a deep reinforcement learning method that learns to
control articulated humanoid bodies to imitate given target motions
closely when simulated in a physics simulator. The target motion,
which may not have been seen by the agent and can be noisy, is
supplied at runtime. Ourmethod can recover balance frommoderate
external disturbances and keep imitating the target motion. When
subjected to large disturbances that cause the humanoid to fall
down, our method can control the character to get up and recover
to track the motion. Our method is trained to imitate the mocap
clips from the CMU motion capture database and a number of
other publicly available databases. We use a state-of-the-art deep
reinforcement learning algorithm to learn to dynamically control
the gain of PD controllers, whose target angles are derived from
the mocap clip and to apply corrective torques with the goal of
imitating the provided motion clip as closely as possible. Both the
simulation and the learning algorithms are parallelized and run on
the GPU. We demonstrate that the proposed method can control
the character to imitate a wide variety of motions such as running,
walking, dancing, jumping, kicking, punching, standing up, and so
on.
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•Computingmethodologies→Neural networks;Motion cap-
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1 INTRODUCTION
In this paper we tackle the problem of underactuated physically-
based character control, where momentum can be changed only
through contacts. Over the last two decades, numerous proposed
methods have considerably improved the state of the art. An impor-
tant issue in character control is to keep a high quality of natural
motions on the one hand, while being able to reproduce a large
variety ofmotions andmotion styles on the other hand. Formany ex-
isting methods that rely on heuristics like foot placement, Jacobian
transpose strategy, base of support and/or hard-coded balancing
rules, these two requirements are hard to fulfill simultaneously. The
desire for being robust against external disturbances even compli-
cates this situation. In this paper we are proposing a method that
is able to imitate a given motion clip closely while at the same time
allowing a large variety of motions. Motion clip-based character
steering is a very common technique in computer games today.
Technically we base our method on simple PD controllers with
dynamically controlled gains together with corrective joint torques.
The target angles for the PD controllers are directly derived from
the provided motion clip at each time step. The key idea is now to
compute the respective gains and the corrective torques using a
deep reinforcement learning agent. We trained this agent with a
large database of mocap examples without any additional heuristics.
The root is not actuated and our controller conserves momentums.
Note that employing the agent alone to steer the PD controller
torque and/or target angle without using the target angle from the
mocap clip would make the control problem very difficult. This
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Figure 1: Punching and kicking mocap clips imitated by our agent.

would effectively limit the variations in motion and style that can
faithfully be reproduced. Previous work on imitating a givenmotion
clip [Merel et al. 2017; Peng et al. 2018, 2017; Peng and van de Panne
2017] has used this approach, and their agent can only imitate one
or very few motion clips per trained network. By contrast, our
combined method can imitate clips sampled from a mocap database
with thousands of motions and even clips that are not seen during
the training with a single neural network. We are not aware of
any previous approach based on deep reinforcement learning that
is able to reproduce such a large motion variety. In addition, the
network training is an ongoing process, meaning that the variety
of reproducible motions can be improved with new examples and
more training.

Also note that using the PD controller alone without corrective
joint torques would practically always result in the agent to crawl
about the floor, as it fails to balance and does not properly apply
torque to result in the correct contact forces required to produce a
desired motion. By contrast, our combined approach even allows
the character to react to a dynamic environment to some extent. For
example, we can randomly throw objects at a character to disturb
its motion without having it immediately falling down. For the case
that it falls after a major disturbance, for example, we use a special
recovery agent that attempts to get the character back close to the
desired pose in the mocap clip. In summary our main contributions
are:

• A novel action space that consists of both the joint torque
and the gain of PD controllers.

• A state representation, a reward function, a state distribution
and a schedule for training the agent with deep reinforce-
ment learning.

• A decomposition of the controller into tracking and recover-
ing phases to allow the controller to be able to imitate the
mocap clip while being able to recover from large distur-
bances that let it fall, for example.

• GPU parallel rollout with dead agent being reset immediately
to avoid stalling.

• GPU training with Proximal Policy Optimization (PPO).

2 RELATEDWORK
Various previouswork employed physics-based character controllers
which exert torque directly or indirectly to joints of articulated rigid
bodies in a physics engine to produce realistic animations. Early
works utilizing Finite State Machines (FSMs) with feedback control
include [Coros et al. 2010; Hodgins et al. 1995; Laszlo et al. 1996;
Lee et al. 2010; Sok et al. 2007; Yin et al. 2007]. Evolution-based

methods have been proposed to optimize controllers for linked
blocks characters [Sims 1994], swimming characters [Grzeszczuk
and Terzopoulos 1995; Tan et al. 2011], bipeds [Wang et al. 2009,
2010], and bipeds with muscles [Geijtenbeek et al. 2013; Wang et al.
2012]. Many of these methods utilize Covariance Matrix Adaptation
(CMA) [Hansen 2007]. Trajectory optimization has been used for
physics-based character control in [Al Borno et al. 2013; Levine
and Abbeel 2014; Levine and Koltun 2014; Mordatch et al. 2015;
Mordatch and Todorov 2014; Mordatch et al. 2013]. We refer the
reader to the excellent survey [Geijtenbeek and Pronost 2012] for
more approaches in physics-based character controllers and focus
on related work based on reinforcement learning and motion clip
tracking below.

Reinforcement learning (RL) has been used by a number of pre-
vious works for controlling physically simulated characters. Many
approaches utilize RL to select and/or provide input to FSM con-
trollers. Colos et al. [Coros et al. 2009] uses RL to train a policy to
select among FSM controllers to achieve a goal. Peng et al. [Peng
et al. 2015] uses RL to select among FSM controllers for each loco-
motion cycle to achieve locomotion over terrains with gaps and
obstacles. Peng et al. [Peng et al. 2016] uses a CACLA RL algorithm
[van Hasselt andWiering 2007] with a neural network as a function
approximator to train a policy for FSM controller selection as well
as for continuous FSM control parameters to achieve locomotion
over sloped terrain for various characters.

More recent approaches utilize RL to directly control the agent
without FSM controllers. Lillicrap et al. [Lillicrap et al. 2015] demon-
strated learning locomotion for 2D articulated characters controlled
with joint torque using a Deterministic Policy Gradient (DDPG)
algorithm. Schulman et al. [Schulman et al. 2015a] achieve similar
results using a Trust Region Policy Optimization (TRPO) algorithm.
They later improve it by utilizing generalized advantage estima-
tion and show that they can learn locomotion for 3D humanoids
[Schulman et al. 2015b]. Peng et al. [Peng and van de Panne 2017]
investigate whether torque, target angle, or target velocity control
are the best for tracking a single mocap clip. Peng et al. [Peng et al.
2017] train two controller levels with RL for locomotion and ball
dribbling, where the low-level controller goal is to match provided
footsteps and the high-level controller places the footsteps to fol-
low some user input and to avoid obstacles. Merel et al. [Merel
et al. 2017] use generative adversarial imitation learning (GAIL) to
train an agent to mimic a single or few motion clips. Supervised
learning is used for training a discriminator to distinguish the mo-
cap clip from the motion produced by RL while RL gets positive
reward by fooling the discriminator. Pure RL with a simple reward
function is used for training humanoid locomotion in a diverse set
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of environments in [Heess et al. 2017] with gradually increasing
difficulty, resulting in a natural looking motion. Glen et al. [Berseth
et al. 2018] combine various policies representing locomotion skills
and used transfer learning to incrementally add new skills. Most
recently, Peng et al. [Peng et al. 2018] demonstrates varieties of
impressive skills learned with neural networks. The agent receives
both the task based reward and motion matching reward. They
reported that a single network can be trained to imitate up to a
handful of motions. None of these RL works is trained on a large
number of mocap clips with diverse types of motions like we do in
this work.

A number of approaches aimed to produce a controller that
tracks mocap clips. Sok et al. [Sok et al. 2007] and Yin et al. [Yin
et al. 2007] performed offline optimization to generate a closed-loop
controller that tracks a running mocap clip. Lee et al. [Lee et al.
2010] track motion clips provided during run time using various
feedback control rules to provide balance. They dynamically query
the appropriate motion clip and make adjustments to the clip on
the fly. Kwon and Hodgins [Kwon and Hodgins 2010] use a PD con-
troller to track a motion clip and use an inverted pendulum model
to approximate the torque needed to provide balance. Cooper and
Ballard [Cooper and Ballard 2012] use fixed joints and forward sim-
ulation to compute torque needed to achieve the same target angles
as motion capture data and modify foot placement to provide bal-
ance. Geijtenbeek et al. [Geijtenbeek et al. 2012] use PD controllers
to track motion and Jacobian transpose control to provide balance.
The parameters for the controllers are optimized with CMA for
each individual motion clip. Wang et al. [Wang et al. 2014] use
trajectory optimization to optimize for joint torque that produces
motion similar to a provided mocap clip. Liu et al. [Liu et al. 2016]
use SAMCON [Liu et al. 2015, 2010], a sample-based approach for
generating controllers for short segments of motion clips and they
generate a control graph that allows transitions between motions
and provides a way to select a new appropriate controller when
the character drifts far from the reference motion. Kavafoglu et
al. [Kavafoglu et al. 2018] use CMA to optimize for parameters to
provide balance for various walking motion clips, given velocity
deviation. Our work differs from these previous works in that we
attempt to learn a single controller that can imitate a wide variety of
motions. This controller attempts to imitate an arbitrary reference
motion clip at runtime, which can be one of many types of motion
and has potentially not even been seen by the agent before. We do
not provide any heuristic to the learning agent like foot placement,
Jacobian transpose strategy, base of support, and so on. The agent
also has to learn not only to balance but also to exert extra control
torques and dynamically adjust the gain of PD controllers to try to
match the resulting motion better to the provided motion clips.

3 METHOD
In this section we will describe how we train the tracking agent
to imitate a provided motion capture clip and recovering agent to
recover from large external disturbance. First, we will explain how
we prepare the motion data in 3.1. We then outline our character
controller in 3.2 and describe how we train the agents in 3.3. Finally
we show how the learned agents can be utilized at runtime in 3.4.
Unless otherwise stated, our units for distance, mass and angles

are meter, kg, and radians respectively. The specific values of the
parameters we used in our experiments can be found in Table 1
and Table 2. Throughout this section, we define the following
functions: QuatToEuler() for converting quaternion to Euler an-
gles, EulerToMatrix33() for converting Euler angles to 3x3 rotation
matrix, Matrix33ToQuat() for converting a 3x3 rotation matrix to
quaternion, RotateInv() for rotating a vector with an inverse of a
quaternion, Average() for computing the average of a list, Count()
for counting the number of elements in which the value is true,
RMS() for computing the root mean square of a list.

3.1 Motion Capture Data Preparation
We employ a 29 DOF humanoid articulated Mujoco model [Kumar
[n. d.]] with modified limbs’ length to match with those used in
[Holden et al. 2016] and radii modified to match an average human.
We use the motion capture database from [Daniel Holden [n. d.]]
which combined the CMU motion capture database [cmu [n. d.]]
with various other publicly available databases along with their
own captures. The poses of head, torso, upper arms, lower arms,
hips, upper legs, lower legs, and feet are used for creating fixed
joints to pull the humanoid articulated model. For each frame of
every mocap clip, we obtain the poses and set the fixed joints. Then
we run our rigid body physics simulation to solve for the rigid
body poses that closely follow the mocap, where collisions between
individual bodies are disabled. We use a GPU based rigid body
simulation [anonymized for review 2018] and set the compliance of
all fixed joints to 10−4. This step is essentially an Inverse Kinematics
(IK) solver. All resulting body poses are stored for later use. The
linear and angular velocities are also calculated and stored for each
body by using finite differencing of the poses in two consecutive
frames.

3.2 Character Controller

Mocap Clip

Physics Simulator Neural Network

Current and future frames data

Poses, velocity, angular velocity of bodies, reward

Joint torques and PD controllers' gains
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Figure 2: Information flow between physics simulator, the
provided mocap clip and the neural network.

The humanoid is controlled by a reinforcement learning agent
that has the goal to imitate the provided motion clip. To be more
precise, the agent’s observation consists of the current state of the
humanoid, the poses of all the body parts in the current frame and
a few frames in the future. Based on the observation, the agent
produces an action which controls the humanoid such that the
resulting motion is as similar as possible to the provided motion
clip. For our case, the action consists of the joint torques and the
PD controller gains. The exact observation the agent receives will
be discussed in great detail later on in 3.3. In this section we first
focus on the control side. Figure 2 shows the flow of information
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between physics simulator, the provided mocap clip and the neural
network.

Let pi , qi , vi , ωi where 1 ≤ i ≤ n be the position, orientation,
velocity and angular velocity of the rigid bodies of the character
respectively, where i = 1 indicates the torso and n is the number of
rigid bodies. Let aj , alowj , ahiдhj avelj where 1 ≤ j ≤ t be the joint
angles, lower joint angle limits, upper joint angle limits and joint
angular velocity respectively where t is the number of joints. Let
pow j be the power of the motor at each joint specified in the MJCF
file. Let fi be the sum of all contact forces on the ith body, and f ci
be a binary value to indicate if the ith body contacts with anything
other than the ground. Let pmi , qmi , vmi , ωmi be the quantities for
the provided mocap clip at themth frame in the future from the
current frame.We define z to point upwards in our world coordinate
system, meaning that gravity acts in the -z direction. Let

θroll ,θpitch ,θyaw = QuatToEuler (q1), (1)

, and let
M = EulerToMatrix33(0, 0,θyaw ) (2)

which aligns the x-axis to the direction the torso is heading and
qM = Matrix33ToQuat(M). We also define epos = | |p1 − p01 | |2 and
erot to be the magnitude of the smallest rotation angle to align q1
with q01. They represent the positional and rotational error of the
torso of the simulated agent with the current frame of the mocap
clip.

Our key idea is to use a combination of a target angle PD con-
troller whose gain is dynamically controlled by the agent, with an
additional joint torque, also provided by the agent to imitate the
provided mocap clip. Specifically, for each joint, j, the target angle
PD controller exert torque equal to

ksj (θ
tarдet
j − θ j ) − kdj

Ûθ j , (3)

where θ tarдetj is the target angle, θ j and Ûθ j are the joint angle
and joint angular velocity respectively, ksj is the stiffness which
is computed as described next. The agent produces actions c j and
sj , where −1 ≤ c

prev
j , c j ≤ 1 and 0 ≤ sj ≤ 1 at each time step.

We set ksj = sjkspow j . The target angles, θ tarдetj , are obtained
from the body poses in the current frame of the provided motion
clip. The damping coefficient used is kd . The PD controllers are
integrated implicitly by our rigid body solver. In addition, we apply
joint torque ktc jpow j to each joint explicitly.

Essentially, the agent has to learn to produce control torque
and the PD controller gain such that the resulting motion closely
matches with the provided clip. The PD controller generally pulls
the limbs toward the desired target angles, but the amount is con-
trolled by the agent. This allows the agent to even turn off the PD
controller, if it chooses to. We experimented with having the agent
to directly set the target angles with fixed gain, and also to use
torque only without any PD controller. If only a single mocap clip
is used in the training these choices of action learn much slower
than our proposed combination of PD and torque controllers. If
numerous mocap clips from the database are used, these choices of
action space produce significantly inferior motion quality both in
terms of reward received and the visual quality. We experimented

with a number of different reward functions and observe this con-
sistently. Using torque on top of a fixed gain PD controller alone
also doesn’t produce as good quality result as having the gain of
the PD controller being dynamically controlled by the agent. Fig-
ure 3 shows a plot of the reward using torque only, torque + fixed
gain PD controller, and torque + variable gain PD controller (our
method) for various cases. The last part of our accompanying video
shows the result of torque only controller vs our method. Generally
speaking, the torque only controller can globally match the center
of mass position and orientation very well for most animations
and hence it still can achieve relatively high reward, however, the
style of the movement is lost. Using a fixed gain PD controller with
torque correction generally produces motion quality similar to the
variable gain PD controller, however, for some fast moving motion
or noisy mocap clips, the agent can lose balance and fall down
easily as it can’t tune down/ignore the effect of the PD controller
and hence achieve lower reward.

Figure 3: Sum of reward per episode obtained vs. PPO itera-
tion so far of various controllers. Pure Torque, Torque with
fixed gain PD controller of ks = 5, 10, 20, 40, 80 and sj = 1,
and Torque with variable gain PD controller (ks = 20 and
0 <= sj <= 1 output by the agent). Our variable torque + PD
controller produces significantly higher reward than other
choices. The sum of reward shown is a moving average over
a window of 200 PPO iterations, to reduce high frequency
noise.

3.3 Training
We use two different agents to control the character, where only
one actively controls the character at a time. The first agent is called
tracking agent with the goal to imitate the mocap clip. It is used
when the character is closely imitating the mocap clip. The second
agent is called recovering agent, and it is used when the character
is far away from the mocap clip, for example when it falls down
or when external disturbances are large. Its goal is to try to get
the agent back to be close enough to the mocap clip so that the
tracking agent can take over the control again. We use different
observations for these two agents, aiming to make the information
useful for the different tasks. During training, we also use different
reward functions and different strategies for sampling the initial
state, as their goals are different.
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3.3.1 Tracking Agent. For the tracking agent, we extend upon the
observation used by RoboSchool [Rob [n. d.]] to include more in-
formation and also the motion clip data. Specifically, we start with
the observation from RoboSchool which contains

• p0.z • sin(θ ) • cos(θ ) • M−1v1 • M−1ω1
• θroll • θpitch • aj • f

д
lef t f oot • f

д
r iдht f oot

where θ = atan2(p01 .y −p1.y,p01 .x −p1.x) − θyaw . We then append
the observation with

• c
prev
j • s

prev
j • M−1 fi • tbad

tmax
bad

• M−1(pi − p1)

and for eachm = {0, 4, 16, 64},
• qM · qm1 • M−1vm1 • M−1ωm1 • M−1(pmi − pi )

where cprevj and sprevj are the agent’s control output in the previous
time step. tbad is first initialized to 0. It gets incremented if epos >
ebadpos or erot > ebadrot . It gets decremented (and clamped to 0) if
both errors do not exceed the thresholds. If the mocap frame in the
future exceeds tmax , we simply pad it with the last mocap frame.
We provide sparse and adaptive sampling of the future frames of
the mocap clip because they provide the agent with short, medium
and long term goals without too much potentially redundant data
which can slow down the learning process. The reward for the
tracking agent is

relectr icity + r joint@l imit + rf eet_coll ision + ralive + rpos

+ rrot + rvel + ravel + rlocal + rheiдht + rcontact + rdead

The terms relectr icity , r joint@l imit , and rf eet_coll ision are similar
to RoboSchool:

relectr icity =kelectr icityAveraдe(|avelj c jpow j/maxk (powk )|)

+ kstall_torqueAveraдe(c2j ),

r joint@l imit = kjoint@l imitCount(|
(aj − 0.5ahiдhj + alowj )

a
hiдh
j − alowj

| > 0.495),

rf eet_coll ision = kf eet_coll ision ((f cr iдht_f oot>0)or (f
c
lef t_f oot>0)).

We propose to use other terms in the following forms:

ralive = kalive , rpos = kposmax(0,
eokpos − epos

eokpos
),

rrot = krotmax(0,
eokrot − erot

eokrot
),

rvel = kvelmax(0,
eokvel − evel

eokvel

),where evel = | |v1 −v01 | |2,

ravel = kavelmax(0,
eokavel − eavel

eokavel

),where eavel = | |ω1 − ω0
1 | |2

rlocal = klocalmax(0, eoklocal − RMSi′(RotateInv(q1,pi′ − p1)−

RotateInv(q01,p
0
i′ − p01))/e

ok
local ,

where RMS (Root mean squared) is taken over some of the body
parts indexed by i ′ as follows: torso1, right_upper_arm, right_hand,
right_foot, left_upper_arm, left_hand and left_foot, which makes
the agent prefer to move the limbs to match that of the mocap.

rheiдht = kheiдht (
eokz −max(0,p01 .z − p1.z)

eokz
)2,

incentivizes the agent to achieve a height greater than or equal to
that of the target. The following term

rcontact = kcontact
∑
i′

| | fi′ | |2

penalizes excessive contact force, where the sum is computed for
the same body parts as rlocal . The final term

rdead = kdead (tbad > tmax
bad )

is to heavily penalize the agent if it falls down before the maximum
time step is reached.We also terminate the agent when tbad > tmax

bad
or if the time step reaches tmax . We choose to use a linear falloff
for these reward terms instead of an exponential falloff as used in
[Peng et al. 2017; Peng and van de Panne 2017] because we found
that the agent learns slower with an exponential falloff in our
preliminary tests. A potential explanation for this is when applying
a low exponent coefficient for exponential decays, the reward an
agent receives for a low error is not significantly higher than the
reward for a moderate error.

We sample the mocap clip from the database by randomly choos-
ing a clip and a starting frame and define the remaining frames to
be the mocap clip the agent gets trained to imitate. If the number of
frames is smaller than tmax , we randomly pick a frame from a clip
that is similar to the last frame in the clip and append the frames
transformed so that the torso’s x and y coordinate and the yaw an-
gle matches. We repeat the process until we have tmax frames. We
pre-compute potential transitions by measuring the RMS positional
errors of the bodies center of mass of the last frame of each clip
against every frame in every other clip as was done in [Kovar et al.
2002]. However, we chose a coordinate system that aligns the two
frames’ torso yaw angles, instead of the least square fit frame. We
allow transition to all those frames with an error < 0.1 or to the
frame with a minimum error, if none of the frames has an error <
0.1.

To reduce irrelevant data, we remove clips from the database
that are obviously not captured when the actor moved around
on a flat floor. We detect such clips by counting the number of
consecutive frames that both feet are not on the floor, i.e. where
their z coordinate > 0.4. If this condition applied to more than 50
consecutive frames, we remove this clip from the database. Finally,
we also remove some small number of clips from the database for
the purpose of training. These removed clips are saved separately
and are used for testing the ability of our agent to generalize to
unseen clips.

We initialize the agent with the poses of the rigid body of the
first frame of the sampled mocap clip as in [Merel et al. 2017]. We
also experimented with adding small amounts of noise to the joint
angles, linear velocity and angular velocity but found that this did
not provide any significant change in learning speed and reward.
We think that this is because there are already a lot of possible
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initial states (>2.5 Million frames) and the noise during the training
already sufficiently jitters the agents to see sufficiently different
states.

3.3.2 Recovering Agent. The goal of the recovering agent is to direct
the character from its current state towards a target pose that is
potentially very different. During this phase, the motion clip is
paused and only its current frame is relevant. For the observation
we start with that from Roboschool and append

• c
prev
j • s

prev
j • M−1 fi • M−1(pi − p1)

• qM ∗ q01 • M−1v01 • M−1ω0
1 • M−1(p0i − pi ).

Notice that we do not include information from future mocap
frames in this case.

The reward function takes a similar form as for the tracking
agent with some modifications. We increase kheiдht , kpos and krot
and zero out kvel , kavel as can be seen in Table 1. We also zero
out rrot , rlocal if epos > eokpos , essentially making the agent first
care about matching the height and position. Only if the height and
position do match reasonable well, the agent attempts to match the
orientation and local pose. The velocity and angular velocities are
ignored.

During training, we randomly pick a frame from the mocap
database as the target pose. As for the initial pose, with 50 percent
chance, we initialize the character with another random frame from
the mocap database. Otherwise we initialize it with a pose lying on
the floor in various manners. These lying poses are generated in
a preprocessing step that initializes the agent using a frame from
mocap and exert random torques on joints for several time steps,
then let it fall to the ground in a ragdoll manner. After the body
stopped moving, we save this pose as lying on the floor. Training
the agent this way results in a recovering agent that can make the
character successfully stand up from most random poses. We also
use a much smaller tmax for the recovering agent, which forces the
agent to more quickly get to the target pose.

3.3.3 Learning Algorithm. We train the agent with the parallel
PPO algorithm [Schulman et al. 2017] using a modified version of
OpenAI’s Baselines [Dhariwal et al. 2017] PPO1 implementation
which uses GPU accelerated Tensor Flow [Abadi et al. 2015]. Our
policy and value neural networks keep track of the running mean
and standard deviation of the input to normalize and clip it to be
between -5 and 5. We use 4 hidden layers of 512 scaled exponential
linear units [Klambauer et al. 2017] which we found to generally
yield faster learning compared to the default tanh units. The stan-
dard deviation for the action sampling during training is fixed to 1
for all dimensions. We modify PPO to use an adaptive optimization
step size, by controlling the target KL divergence between the old
and the new policy. If the current KL divergence is more than two
times the target KL divergence, we reduce the optimization step
size by a factor of 1.5. If the current KL divergence is less than
half of the target KL divergence, we increase the optimization step
size by a factor of 1.5. This approach allows for reduced variance
during the training process and allows for more aggressive updates
when the KL divergence is small. We use a target KL divergence
of 0.01 in all our experiments and initialize the optimization step
size to 5 × 10−4. We use the discount factor γ = 0.99 generalized
advantage estimate discount factor λ = 0.95 and clipped surrogate

objective ϵ = 0.2. We point the reader to [Schulman et al. 2017] for
an explanation of these parameters.

We simulate 500 agents in parallel using a GPU rigid body solver
[anonymized for review 2018] to rollout the current policy. Hence,
we modify Baselines to evaluate actions and state values of all
agents in parallel and communicate with the simulator at every
time step. Dead agents are individually reset immediately. We per-
form one PPO update every 200 time steps, which corresponds to
100k samples. Resetting dead agents immediately slightly skew the
rollout to collect more short episodes compared to longer ones.
This tends to make the reward vs. number of PPO updates (when
the same number of samples is used per PPO update) grow slower
compared to using an equivalent number of serial time steps, or
stalling dead agents to not generate more samples and reset all the
agents at the same time. However, with a large number of agents as
in our case, stalling is not efficient and the slower growth of reward
vs. number of PPO updates is more than made up for by having a
much faster rollout. Most of the computation steps including the
whole simulation and PPO are executed on the GPU.

We experimented with having only a single network for both
tracking the input mocap and recovering from large disturbance by
taking the union of states and combining the reward functions, by
unionizing the terms and tweaking weights and stop the motion
capture frame incremental when epos > ebadpos and/or erot > ebadrot
to allow the agent to "catch up". Some of the agents are initialized
in the same way as tracking agent and the rest in the same way as
recovering agent. Despite a lot of trials we found the performance of
both tracking and recovering to not come close to having separate
networks for these tasks, so we keep them separate.

3.4 Runtime
During runtime we use the tracking agent to control the character
as long as epos < ebadpos and erot < ebadrot . Otherwise, we pause
the mocap clip and switch to the recovering agent. We generally
would like to use the tracking agent to match the input mocap clip,
but if it fails for various reasons such as external disturbance, we
use the recovering agent to get the character back to where the
agent can continue to track ie. when epos < ebadpos and erot < ebadrot .
During run time, we always choose the greedy action output by
the network.

Table 1: Parameter values used, common to tracking agent
and recovering agent

Name Value Name Value
ks 20 kjoint@l imit -0.2
kd 100 kf eet_coll ision -0.2
kt 0.81 kalive 1.5
eokpos 0.6 eokvel 2.0
ebadpos 1.0 eokavel 2.0
eokrot

π
2 eoklocal 0.1

ebadrot π eokz 1.0
tmax
bad 30 kcontact − 1

300
kdead -400 kelectr icity -7.2
kstall_torque -0.5
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Table 2: Parameter values for tracking agent and recovering
agent

Name Tracking Agent Recovering Agent
kpos 1.0 6.0
krot 2.0 3.0
kvel 1.0 0.0
kavel 1.0 0.0
klocal 9.0 0.6
kheiдht 4.0 6.0
tmax 2000 180

3.5 Results
We performed our experiments on a NVIDIA Tesla V100-SXM2-
16GB GPU. For our tracking agent, we experimented with up to 7
hidden layers and found that 3 to 6 layers provide the best sum of re-
ward per episode. We also experimented with 2 hidden layers with
more units, but found that the reward received for the same number
of network weights is lower than having more layers. The reward
obtained for various cases are shown in Figure 4. The animations
shown in the figures and the videos are generated with 4 hidden
layers. Throughout this paper and the accompanying video, the
simulated characters are colored in brown while the target mocap
clip is colored in green. 40000 PPO iterations including the simula-
tion and learning takes about 120 hours of computation times on
a single GPU. The reward plot for our recovery agent is shown in
Figure 5.

Figure 4: The sum of reward per episode vs number of PPO
iterations so far of our tracking agent using different num-
ber of hidden layers and number of hidden units per layer.
Two layer performworse than three ormore layers. Three to
six layers yield a similar level of reward. Seven layers yields
a smaller reward. The sum of reward shown is a moving av-
erage over a window of 200 PPO iterations, to reduce high
frequency noise.

Figure 6 shows that our method can track walking, crouch walk-
ing and running mocap clips. Figure 1 shows punching and kicking
mocap clips being tracked by our agent. Due to the random sam-
pling nature of our training method and the fact that our database
consists of over 10 millions frames, these exact clips may have
never been seen or may have been seen only a few times by the
agent. The results in our accompanying video demonstrate that our
method is able to imitate a remarkably wide variety of motions and

Figure 5: The sum of reward per episode vs number of PPO
iterations so far of the recovery agent. The sum of reward
shown is a moving average over a window of 200 PPO itera-
tions, to reduce high frequency noise.

styles. Some of the motions also contain a significant amount of
noise, as the mocap data is not cleaned up. Nonetheless, our agent
can tolerate this noise to a certain extent. Figure 7 shows the agent
imitating clips that are not used during training, demonstrating the
ability of our agent to generalize to unseen clips. Figure 8 top row
shows the agent being hit by a small box thrown by the user. The
tracking agent is able to keep controlling the character. The bottom
row shows the agent falling down after being hit by a big box. Here,
the recovering agent is activated to bring the character back to a
pose close to the current mocap clip frame.

We also experimenting with omitting some reward terms and
train for 40000 PPO iterations. The accompanying video shows
that omitting rlocal , which causes the agent limbs to not match
mocap, and rpos which results in the global position to not follow
the mocap.

4 DISCUSSION
We proposed a method for imitating a provided motion clip with
a physics-based controller using reinforcement learning. The con-
troller can tolerate some amount of perturbations. When it is sub-
jected to large perturbations or when it fails to track the provided
motion and the character falls down, it attempts to get the character
up again and to come back to track the motion. Figure 10 shows the
frame reached before the tracking agent is dead, starting from the
first frame, for each padded mocap clip from the database averaging
over 20 trials. The animations are sorted from the highest to the
smallest frames reached. 1382 clips can be tracked from start to end
and 3200 clips can be tracked for more than half their lengths. 208
clips failed to be tracked for more than 50 frames, most of which
are the motions on non-flat terrain that are not pruned out by our
detection heuristics.

While our method can track a wide variety of provided mocap
clips, it still can fail to track certain motions such as some flips, some
fast jumps, and some break dances, examples of which are shown
in Figure 9 and in the accompanying video. For these motions
it is tricky to keep the balance. Nonetheless, we experimented
with training a dedicated network to imitate only one and a few
of these motions and found that the network can imitate them
faithfully. This suggests that the network architecture is capable of
representing the policy that successfully imitates these motions. It
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Figure 6: Normal walking, walking across a tall obstacle, walking while swinging arms, crouch walking mocap clips imitated
by our agent.

Figure 7: Unseen jogging and jumping mocap clip being imitated by our agent. The mocap clips are not used during training,
demonstrating that our method can generalize to unseen clips to a certain extent.

Figure 8: The character get boxes threw at. Top) The character get displaced and the tracking controller continues to control
it to track the mocap clip. Bottom) The character falls down, the recovering agent controls the character to get up and the
tracking agent resumes the control to continue tracking the mocap clip.
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Figure 9: Backflip and break dance clips, failed to be tracked by our agent

Figure 10: Frame reached before the tracking agent is dead,
starting from the first frame, for each padded mocap clip
from the database averaging over 20 trials. The animations
are sorted sorted from the highest to the smallest frames
reached.

is an interesting area of future work to explore curriculum based
learning or some other training techniques to be able to imitate a
larger portion of the motion capture database with a single network.

Our method produces jittery motion in some rare cases. This is
not due to the simulation error. We noticed that the network from
PPO iteration around 20,000 does not have this issue at all, but it
can also imitate fewer mocap clips. We think that this is due to
the agent trying to optimize for more reward by performing micro
movements. This is rather undesirable and it will be an interesting
future task to add a reward term that penalizes this behavior while
not affecting the imitation capability.

The use of two individual networks for tracking and for recov-
ering is not very convenient and it requires some rules to switch
between them. An interesting area of future work would be to in-
vestigate on what it would take to be able to train both cases with
the same network. Alternatively, a higher-level controller similar
to the one used in DeepLoco [Peng et al. 2017] could be trained to
switch between them seamlessly.

Our motion clips used as target for the agent mostly come from
a mocap database. In addition to this, it would be interesting to
use the motion graph [Kovar et al. 2002] with motion blending
[Feng et al. 2012] to generate target clips. Alternatively, a real-time
motion clip generator such as [Holden et al. 2017] could also be
used. These methods may provide an even more diverse dataset for
training the RL agent.

Training the agent to follow motion clips on non-flat terrain and
object manipulation would also be an interesting area for future
work. More observations and novel training methods would likely
be needed to allow the agent to master such situations. Nonetheless,
our tracking agent is able to control the character to imitate some
motion clips on uneven terrain with small and moderate slope, an
example of which is shown in Figure 11 and the accompanying
video. For the high slope terrain, the character eventually falls down
and the recovering agent is able to control the character to get up a
few times.
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