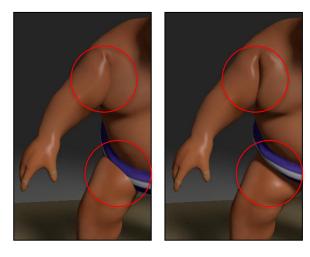
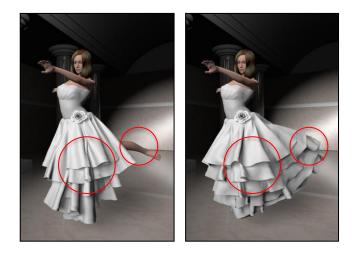


Air Meshes for Robust Collision Handling

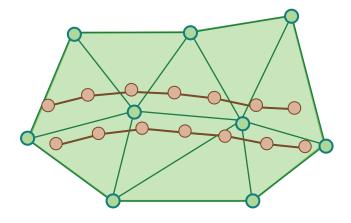

Matthias Müller Nuttapong Chentanez Tae-Yong Kim Miles Macklin



Motivation

Handling Collisions on Characters

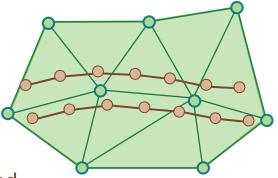
Tissue Simulation


Clothing Simulation

Game Requirements

- Fast and simple
- Cannot guarantee a collision free state
 - Kinematic objects
 - Time limitation
- → Smooth recovery from any entangled state
- Suitable for GPU acceleration

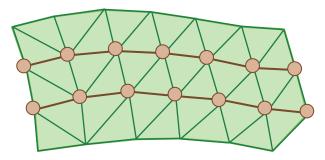
Embedding e.g. [Müller et al. 2004]



- Create enclosing tetrahedral simulation mesh
- Move cloth with the surrounding tetras

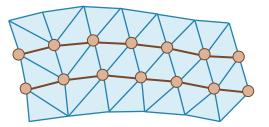
Embedding

- Pros:
 - Simple and fast
 - Untangling =
 handling inverted elements
 - No dynamic data structure for accelerating collision detection needed
- Cons:
 - Reduced flexibility (dof)
 - Influences cloth in collision free state



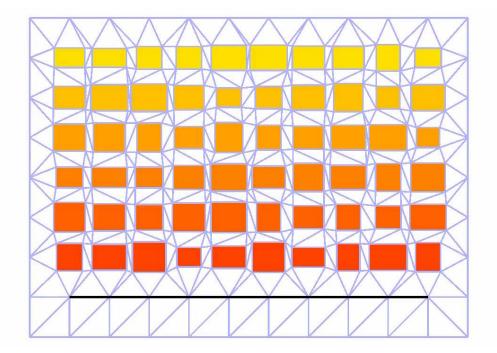
Fix Reduced Flexibility

• Let tetra vertices coincide with cloth vertices

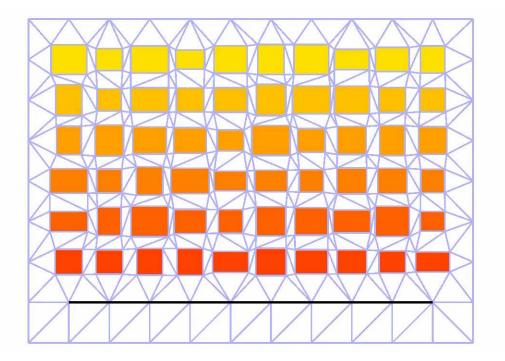


Remove Influence in Collision Free State

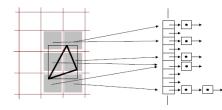
- Instead of elastic forces
- Use a constraint
 - Keeping the volume positive
 - Unilateral: Only active when the volume is negative!

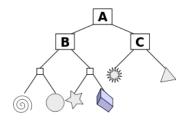

• \rightarrow Air mesh

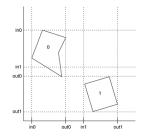
• Handles collision detection and response


2D Example

Recovery





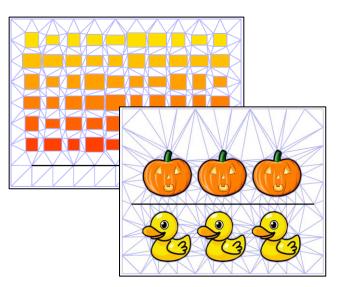

Related Work

Collision Detection

Spatial Hashing [Teschner et al. 2003] Hierarchical BVHs, BSPs, R-Trees Sweep And Prune [Baraff 1992]

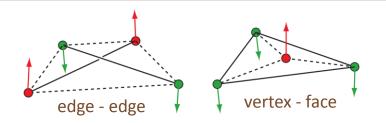
• We: persistent triangle / tetrahedral mesh

Collision Response

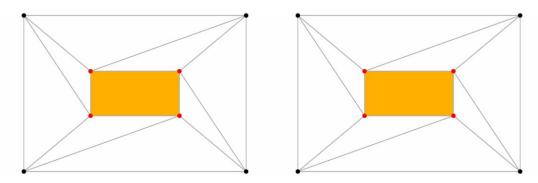

- Elastic repulsion based on proximity [Bridson et al. 2002]
- Stop motion at time of collision (CCD) by
 - Application of impulses [Bridson et al. 2002]
 - Application of position corrections [Müller et al. 2006]
- Air meshes
 - Flip inverted air elements at the end of the time step
 - No proximity measure or CCD necessary

Initial Mesh Creation

- Conforming mesh needed
 - Element boundaries line up with object boundaries
- Procedural for simple scenes
- Compute a constrained Delaunay Mesh
- TetGen [Si 2015]

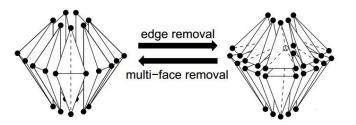

Per Element Constraint

• In a Position Based Dynamics Framework [Müller et al. 2008]

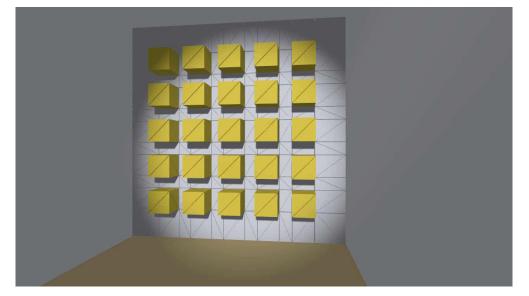

• 2D:
$$C_{air} = |(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)| \ge 0$$

• 3D:
$$C_{air} = det[\mathbf{p}_2 - \mathbf{p}_1, \mathbf{p}_3 - \mathbf{p}_1, \mathbf{p}_4 - \mathbf{p}_1] \ge 0$$

Locking Problem

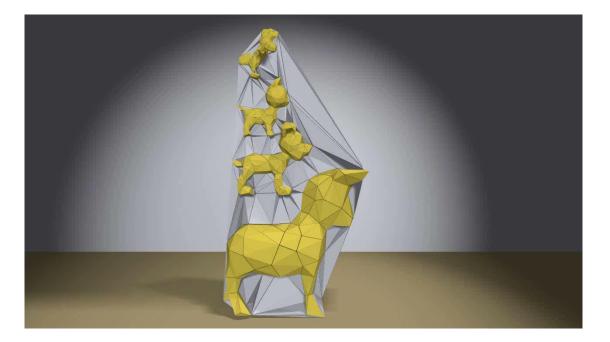

- Use kinetic pseudo triangulation Agarwal et al. [2000]
 - Provably avoids the locking problem, expensive, only in 2D
- Perform all edge flips that improve triangle quality
 - Simple, effective in practice

3D Mesh Optimization



- Tetra mesh optimization is expensive
- Edge flips correspond to two complex operations

3D Mesh Optimization



- Single thread on CPU
- 250 object elements
- 3k air elements
- Simulation: 2 ms
- Optimization: 80 ms

Irregular Mesh

With Surface Meshes

Omitting Mesh Optimization

- Locking is not a severe problem if
 - Motion mostly perpendicular to character surface
 - Minimal relative rotation and sliding

tissue

clothing

Sumo Fighter

- Single thread on CPU
- 32k tissue elements
- 1.7k air elements
- 20 fps

Sumo Fighter

Dancer

- Single thread on CPU
- 47k cloth elements
- 165k air elements
- 2 fps

Volume Conservation Constraint

Volume Inversion Constraint

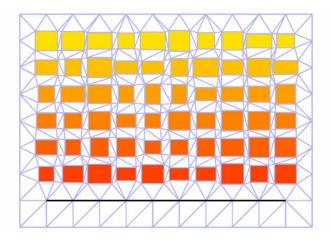
Untangling

Cat Walk

- GPU implementation
- 110k triangles
- 320k air elements
- 60 fps (Titan Z)

Cat Walk

Conclusion



- New method for combined collision detection and response
 - Triangulate air, make sure elements do not invert
 - Solves the difficult untangling problem
- Mesh optimization is needed to prevent locking
- Simple in 2D
 - Suitable for arbitrary scenes, mobile phone games
- Complex in 3D
 - Two important applications allow omission of optimization
 - Tissue simulation and multi-layered clothing

Future Work

- Air mesh does not need to be consistent tetra mesh
 → simpler and faster way to optimize mesh?
- Dynamic creation and deletion of air elements

Questions?