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Figure 1: Cable joints allow the fast and robust simulation of complicated arrangements of cables by defining a single constraint for each
cable segment between two contacts.

Abstract
Robustly and efficiently simulating cables and ropes that are part of a larger system such as cable driven machines, cable cars
or tendons in a human or robot is a challenging task. To be able to adapt to the environment, cables are typically modeled as
a large number of small segments that are connected via joints. The two main difficulties with this approach are to satisfy the
inextensibility constraint and to handle the typically large mass ratio between the small segments and the larger objects they
connect.
In this paper we present a new approach which solves these problems in a simple and effective way. Our method is based on the
idea to simulate the effect of the cables instead of the cables themselves. To this end we propose a new special type of distance
constraint we call cable joint that changes both its attachment points and its rest length dynamically. A cable connecting a
series of objects is then modeled as a sequence of cable joints which reduces the complexity of the simulation from the order of
the number of segments to just the number of connected objects. This makes simulations both faster and more robust as we will
demonstrate on a variety of examples.

CCS Concepts

•Computing methodologies → Physical simulation;

1. Introduction

There is a large variety of dynamic systems that are driven by cables
or ropes. Examples are cranes, pullies, cable cars, workout cable
machines, bows or six DOF seats in VR applications. Humans and
animals are cable driven via a net of tendons. This idea has been

adopted in robotics to make robots and robot hands more human-
like and more flexible.

Simulating cables in such systems is a challenging task. For a
simulation, a cable has to be discretized, most commonly into a
sequence of small segments. For cables to wrap correctly around
objects and to resolve collisions accurately, these segments must be
small. Cables are typically modeled as one dimensional structures.
In such structures, the connectivity is much smaller than in cloth or
soft bodies. As a consequence, enforcing inextensibility - a crucial
constraint for cables - can get expensive if the number of segments
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is high. Iterative Gauss-Seidel or Jacobi type solvers are popular
due to their simplicity and the fact that they match well to GPUs.
However, in these solvers, errors propagate only one segment per
iteration which prevents the simulation of long inextensible cables
in real time. A second challenge for solvers is to handle constraints
between objects with large mass ratios, in this case between the
small cable segments and the large objects they drive. The approach
we propose in this paper addresses both of these problems.

While devising our method, our main goal was to find a small
number of carefully selected assumptions that allow the formula-
tion of a novel, extremely simple, and robust algorithm which is
still able to simulate virtually all real-world cable driven systems.
We achieved this goal with the following set of assumptions:

1. It is sufficient to simulate the effect of cables on objects they
connect rather than the cables themselves.

2. Cables do not slide on rotating objects.
3. Cables move in a plane which is perpendicular to the axis of

rotation.

More specifically we assume that the effect cables have on ad-
jacent bodies is not influenced by the dynamics of the cable apart
from its resistance to stretching along the line between the contact
points on the two adjacent objects. As we show in the results, this
assumption holds to a high degree in most cable driven systems
because the cables are typically much lighter than the objects they
connect. In this paper we only discuss stretching resistance. How-
ever, our method allows the application of additional forces due to
compression, the mass, twist or bending of the cable segments as
well.

The second assumption can be justified by the observation that
cable driven systems are typically designed to prevent sliding be-
cause slipping cables wear out quickly. Also, slipping is only pos-
sible if there is significant friction against the rotation of the wheel
causing forces on the circumference that surpass the static friction
limit. However, it would still be possible to model dynamic friction
in our framework by maintaining a non-slip condition but adjust-
ing the rotational friction of the wheels accordingly. For example,
a cable slipping over a static wheel could be modeled by a cable
sticking to a dynamic wheel with rotational friction.

The third assumption is natural because cables that run at an an-
gle over a rotating wheel or cylinder fall off immediately even with-
out any slipping (pure rolling). We have not encountered a system
in which this assumption does not hold. In two dimensions, the as-
sumption holds trivially.

Holding to these assumptions allowed us to formulate a novel
extremely simple and robust simulation method with a significant
speedup over existing methods. Our basic idea is to introduce a
new type of joint between a pair of bodies we call Cable Joint.
Because cables are represented simply by a set of joints, our model
can be added easily to any existing rigid body engine. In addition,
our method applies equally to cables, chains and ropes, and we use
the term cables to refer to all primitives above in what follows.

Figure 2 shows the behavior of a cable joint. The joint simulates
the effect a cable has on the two wheels. A cable joint is a uni-
lateral upper distance constraint between two attachment points on
two different bodies, i.e. it enforces d ≤ d̄n, where d is the current

𝑑 ≤ ҧ𝑑𝑛

ҧ𝑑𝑛+1 = ҧ𝑑𝑛 + 𝑠1 − 𝑠2

𝑠1
𝑠2

𝑠1
𝑠2

𝑑 ≤ ҧ𝑑𝑛

ҧ𝑑𝑛+1 = ҧ𝑑𝑛 + 𝑠1 + 𝑠2

Figure 2: Top: A cable joint is a unilateral distance constraint (red
line) between two attachment points (red points) with an upper dis-
tance limit d̄n, i.e. it enforces d≤ d̄n, where d is the current distance
between the attachment points. Bottom: After both wheels have ro-
tated, the attachment points have rotated to the positions shown in
blue. A cable joint adjusts the attachment points in order to remain
tangent to the two wheels. In addition, the upper distance limit d̄n
is updated to absorb the distances s1 and s2 the attachment points
have moved along the surface of the wheels. The signs of the up-
dates are dependent on the direction of the rotations.

distance between the attachment points and d̄n the upper distance
limit at time n. With fixed attachment points and after one time
step, the attachment points would be at the locations shown in blue
at the bottom of Figure 2. In contrast, a cable joint adjusts its attach-
ment points to remain tangent to the two bodies. After updating the
attachment points, the distance limit or rest length of the joint is
adjusted to compensate for the distance the attachment points have
travelled along the surface of the wheels. This has the effect that
rest length, as a state of the constraint, can move from joints onto
wheels and to other joints. This idea is crucial and – to the best of
our knowledge – unique to our model. It allows us to simulate a
single cable that is stretched in certain regions and loose in others.
It also allows us to simulate spools by simply storing the amount of
cable on a wheel using a single scalar value.

Cable joints allow us to discretize cables into a low number of
constraints equal to the number of objects touched by the cable
rather than a potentially large number of small segments. In tradi-
tional methods, cable constraints get more complicated as the num-
ber of adjacent objects increases. In our case, all joints always con-
nect exactly two objects. Without "knowing" of each other, they
create the effect of a single cable connecting multiple bodies auto-
matically. Our main contributions are:

• The introduction of cable joints as unilateral distance constraints
with dynamic attachment points and rest lengths.

• The idea of representing a cable by a set of scalar rest lengths
which can be passed over wheels from one segment to another.

• Methods to split and merge cable joints.
• Extensions such as spools and pinholes.
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2. Related Work

While our method works with force and impulse based solvers as
well, we use a position based rigid body engine similar to the one
described in [DCB14] and in a broader context in [BMM17]. Our
engine also incorporates the handling of compliant constraints as
detailed in [MMC16]. This allows us to correctly handle elastic ca-
bles, an effect that has not been treated in previous computer graph-
ics work – to the best of our knowledge.

Early work on cable and wire simulation includes the method
proposed by Brown et al. [BLM04] to model knot-tying. They rep-
resent a wire by a sequence of segments. To guarantee inextensibil-
ity they solve the distance constraints quasi statically from front to
back using the follow the leader method. The method produces sig-
nificant artifacts in dynamic environments which were addressed
by Müller et al. [MKC12]. Both methods are designed to handle
free strands that are attached at one end such as in hair and fur. The
same is true for the method proposed by Kim et al. [KCMF12] in
which additional constraints from each segment to the attachment
point are introduced to make strands inextensible.

These methods simulate the entirety of cables or strands by mod-
eling them as a sequence of small segments. The same is true
for the method proposed by Servin et. al [SL08] in which ca-
bles are modeled by a sequence of jointed rigid bodies. To sta-
bilize such a setup Ham et al. [Ham15] formulate the problem
as a Discrete Euler-Lagrange (DEL) equation and utilize regular-
ization and stabilization to improve the numerical stability. There
are other options to handle the problem of large mass ratios be-
tween small cable segments and larger objects on the solver level.
Tournier et al. [TNGF15] proposed a global constraint solver that
simultaneously handles stiff and compliant constraints and An-
drews et al. [AMK17] introduce damping based on the geometric
stiffness component. Instead of using rigid bodies, another popular
approach to simulate the segments of a cable is to use the rod model
as in [ST08, Pai03, BAC∗06, BWR∗08].

More related to our approach are methods that use more flex-
ible or simplified models for the cables instead of a sequence of
uniform segments to increase robustness and fidelity of the simu-
lation. Garcia et al. developed a method to robustly simulate ca-
ble driven systems such as cranes in [GFPCMD07], [GFPCMD08]
and [GPM08]. The method is very similar to the one proposed by
Servin and Lacoursiere [SL07]. As in our case, the cable connect-
ing two bodies is represented by a single constraint. However, in
contrast to our method, only pinholes are supported and the tension
in the entire cable is assumed to be uniform.

More recently, Servin et al. proposed a multi-resolution method
for the simulation of wires in [SLNB11]. It is more flexible and
models the cable itself between contacts as well. The discretization
changes dynamically to optimally represent the shape of the cable.
The flexibility comes at the price of a more complicated algorithm
however.

Sueda et al. [SJLP11] propose a sophisticated way to represent
wires using a combination of Lagrangian and Eulerian nodes. Our
moving attachment points are related to their Eulerian nodes be-
cause they slide along the cable. However, our model is signifi-
cantly simpler because we do not handle those nodes explicitly but

define them implicitly to be the tangent points on the objects. Also,
our moving attachment points are the only nodes simulated while
we replace Lagrangian nodes by storing rest lengths. Sachdeva et
al. [SSB∗15] similarly use a combined Eulerian and Lagrangian
Method to discretize tendon strands for hand simulation. In con-
trast to these methods, we do not change the discretization which
prevents the possibility of popping artifacts.

There is related work outside graphics research as well. The idea
of simulating the effect of a cable rather than the cable itself is
related to the idea in biomechanics to represent an entire muscle
by a single moment arm as described in [MdTFW04]. The Vor-
tex Engine [Vor17] supports cable simulation and uses the concept
of non-flexible cable segments in which the cable between pulleys
is modelled as one specialized constraint similar to our case. The
constraint ensures that the rotation speed of the pulleys multiplied
by their respective radii matches which is quite different from the
effect of a cable joint. It is not clear whether a gear as shown in Fig-
ure 16 can be simulated correctly without the notion of an attach-
ment point. Furthermore, only bi-lateral and non-compliant behav-
ior can be modelled without storing the amount of cable between
the pulleys and connecting a pinhole or attachment with a pulley is
not possible because the rotation speed is not defined there. Cable
driven systems have become important in robotics as well. We refer
the reader to the survey of [Naz12].

3. The Basic Algorithm

After we have explained the basic idea behind cable joints, we will
now discuss the overall method as detailed in Algorithm 1.

Algorithm 1 Basic Algorithm
1: procedure TIMESTEP

2: for all cable joints do
3: compute new attachments points a′l and a′r

. see Alg. 3 or 4
4: d̄← d̄ + surfaceDist(al ,a′l)
5: d̄← d̄− surfaceDist(ar,a′r)
6: al ← a′l , ar← a′r
7: end for
8: for all cable joints do d̂← d̄
9: for all pinhole links do

10: if dl > d̂l then
11: d̄l ← d̄l +(dl− d̂l), d̄r← d̄r− (dl− d̂l)
12: end if
13: if dr > d̂r then
14: d̄l ← d̄l− (dr− d̂r), d̄r← d̄r +(dr− d̂r)
15: end if
16: end for
17: runSolver()

. treat all cable joints as unilateral distance joints
18: end procedure

3.1. Cable Joints Connecting Wheels

Consider the scenario shown in Figure 2. The top row shows a ca-
ble joint at the current time step. It simply acts as a unilateral up-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



M. Müller et al. / Cable Joints

per distance constraint between the red attachment points. Unilat-
eral because we assume that the cable does not support endpoint to
endpoint compression or at least that the system the cable is part of
does not rely on compression support. This is the case for most ca-
ble driven systems. We could easily drop this assumption by using
a bilateral constraint with a controllable stiffness in the compressed
state.

The first key observation here is that the cable can only exert
forces on the wheels in the stretched state. This is the reason why
cable joints adjust their attachment points dynamically to remain
tangent.

Apart from the adjustment of the attachment point’s locations,
we model the cable as a regular distance constraint between the
bodies. This is correct if we assume that the cable does not slip
on the wheels. This assumption holds if the wheels turn without
resistance. It still holds with rotational friction if the force the cable
exerts on the wheel exceeds the static friction limit.

The second key observation is that we have to compensate for
the change of the attachment locations by adjusting the joint’s rest
length in order to get the correct behavior of the cable. Let us
go back to the bottom images of Figure 2. After the wheels have
turned, the attachment points of a regular distance constraint with
fixed attachments would be at the blue locations. To keep the cable
joint tangent to the wheels we have to move the attachment points
by the distances s1 and s2 along the surface of the wheels. In the ex-
ample on the left, these lengths correspond to the amount of cable
that was unwound from the left wheel and wound up by the right
wheel, respectively. Therefore s1 has to be added and s2 subtracted
from the rest length. On the right, the cable was unwound from both
wheels so both, s1 and s2 have to be added to the rest length.

Note that our approach models both the stretched and the loose
case of the cable. In the stretched case where d = d̄, the cable joint
is tangent to the wheels and it exerts forces. In the loose state, d is
smaller than the rest length d̄. In fact, the rest length d̄ can be signif-
icantly larger than d. In the loose case, the points at which the cable
leaves the wheels are not the tangent points. It would be quite dif-
ficult to compute the true locations. Fortunately, because no forces
are exerted in the loose state, the error introduced by keeping the
constraint tangent has no effect on the simulation. We visualize the
loose case by drawing a curved cable procedurally but for the sim-
ulation we can still think of it as a straight line. Imagine that the
wheels at the bottom right of Figure 2 make a full turn in the di-
rection shown. In this case the circumference of both wheels would
be added to the rest length d̄. When the wheels switch the rotation
direction, no force acts up until they do a full turn back at which
point the cable joint correctly kicks in again.

So far we have not considered the fact that two circles have
the four possible common tangents shown in Figure 3. To make
the choice unique we specify an orientation for each wheel (black
round arrows in Figure 3) which needs to be specified by the user
before the simulation starts. The orientation does not restrict the
actual direction of rotation during the simulation. Based on these
orientations and the order in which the bodies appear in the cable
(red arrows) we pick the tangent as shown in the Figure 3. Defining
the orientations and an ordered sequence of bodies completely de-
fines a cable path in a system as shown in Figure 4 up to the choice

Figure 3: Two circles have four possible common tangents. The
correct tangent is chosen based on the orientation of the two wheels
and their order.

Figure 4: The winding of the cable is defined by the orientations of
the wheels. Flipping the orientations results in a new cable config-
uration.

of making the cable open or closed. Choosing the tangents in this
way guarantees that the cable joints create a consistent cable. To
ensure joints behave correctly with respect to the chosen tangents,
the distances s1 and s2 have to be measured in the direction defined
by the orientation. Specifically, the distance is positive iff the ori-
entation of the segment on the wheel from the new to the previous
attachment point corresponds to the orientation of the wheel (as on
both sides of Figure 2). For convenience we provide code for the
computation of the attachment points for wheels in the Appendix.
Even though the cable joints do not "know" of each other and the
part of the cable on the wheels is not explicitly modeled, we get the
correct physical behavior of a chain and how it affects the bodies it
connects.

3.2. General Polygonal Shapes

It is straightforward to generalize the described approach to polyg-
onal shapes (see Figure 5). On a mesh-based shape, the attachment
point always coincides with a vertex of the convex hull because the
cable on the body takes the shape of the convex hull. The distance
on the surface - or the amount of cable that is added or removed
has to be measured along the convex hull as well. Since the bodies
both rotate opposite to their orientation in this particular case, the
signs of s1 and s2 in the update formula are opposite to the signs in
Figure 2. Figure 6 shows how the tangent between a wheel and a
shape can be computed iteratively. We start with a random point on
the wheel. Depending on the orientation of the shape we determine
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𝑑𝑛

𝑠1 𝑠2

𝑑𝑛+1 = 𝑑𝑡 − 𝑠1 + 𝑠2

Figure 5: Cable joint connecting a wheel and a general shape. On
the shape, s2 is measured along the convex hull.

(2)(1)

(4)(3)

Figure 6: Iterative construction of the common tangent. From a
random point on the wheel, find the left-most visible point on the
convex hull of the shape (1). From this point, find the leftmost point
on the wheel. Continue until the points are not updated.

the left- or rightmost point on the shape. From this point we find
the left- or rightmost point on the wheel depending on its orien-
tation. We repeat this process until the two points are not updated
anymore. This iteration converges quickly in practice. The method
works for the wheel–shape, shape–wheel and shape–shape cases
and terminates in a finite number of steps. For the simpler wheel–
wheel case, however, we use the explicit formula given above.

3.3. Attachments and Pinholes

We can define different relationships between a cable and the object
it connects to. In what follows we call this relationship a link. So
far we have considered rolling links shown as red dots in all figures.
We support three more types of link to allow the setup of general
configurations like the one shown in Figure 7. The first is an attach-
ment link shown in green. For such a link we simply neither modify
the attachment point nor the rest length. The second type is a pin-
hole link depicted in blue in the same figure. We want the cable
to slip through the hole and the hole to be fixed relative to a body.
Therefore, we do not move the attachment point but adjust the rest

Figure 7: A general setup with a pinhole link (blue), an attachment
link (green) and a hybrid link (red-green). The dashed part of the
cable is not simulated.

Figure 8: Cable joints in 3D. For each 3D shape, a plane is defined
in which the cable is restricted to move. For cylinders, the plane has
to be perpendicular to the axis to create a circular cross section.
The part of the cable simulated by cable joints is shown in red. The
yellow parts are not simulated explicitly.

lengths of the two adjacent cable joints such that their tensions (the
current length divided by the rest length) are the same. This proce-
dure is detailed in the second part of Algorithm 1. To compute the
tangents between rolling and non-rolling links Algorithm 3 is used.
If both links adjacent to a cable joint are non-rolling, the tangent is
simply the line connecting them.

3.4. Cable Joints in 3D

In 3D cable driven systems, the cables often run within planes such
as the tendons of a finger in the robot hand shown in Figure 1. For
such a case, the entire cable can be simulated within a plane us-
ing the 2D algorithm. In order to be applicable to general systems,
our method must be able to handle arbitrarily positioned bodies.
Fortunately, the generalization to 3D is quite straightforward.

Figure 8 shows a more general case. In a situation like this we de-
fine one local cross section plane per 3D object in which the cable
is restricted to move. We have discussed why this is a reasonable
restriction in the introduction. For cylinders we require this cable
plane to be perpendicular to the cylinder’s axis so that the cross sec-
tion is a disc. Note that this requirement does not restrict adjacent
wheels to be perpendicular to each other for the cable to be C1 con-
tinuous as Figure 9 shows. For mesh-based shapes, the cable plane
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Figure 9: Left: for the cable to be C1 continuous at the attachment
points (transition from yellow to red), the wheels do not need to be
oriented perpendicular to each other. Right: the transition marked
with a circle kinks temporarily. For such a machine to work, the
wheel would have to be indented corresponding to our constrained
simulation.

can be chosen arbitrarily. As a pre-processing step we compute the
convex hull of the cross section. In this way, we reduce the 3D to
the 2D case.

The main remaining question is how to compute tangents since
the cable planes of the two objects adjacent to a cable joint may not
coincide. Fortunately, the algorithm shown in Figure 6 works in
3D as well. The only modification is that the point from which the
ray is cast has to be projected into the local frame of the adjacent
body at each iteration. For the frequent case of two cylinders with
coinciding cable planes we use the disc - disc algorithm.

4. Extensions

In the basic algorithm, the amount of cable between two links is
represented by the scalar d̄. If the amount of cable s on the bodies is
tracked as well, a set of additional effects can be simulated as sum-
marized in Algorithm 2. The value s of each link is pre-computed
as the distance along the surface between the attachment points or
provided by the user to simulate a spool for instance. Then at every
time step the lengths are updated analogous to the update of the rest
lengths.

4.1. Hybrid Links

A hybrid link (shown in red-green) in Figure 7 is a link that auto-
matically switches between rolling and attachment. This link sim-
ulates the fact that there is only a finite amount of cable on the
adjacent body. If s becomes negative, the link becomes an attach-
ment point simulating that the cable is used up. This situation is
shown in Figure 10(2). We allow the hybrid link to become a rolling
link again. This happens when the fixed attachment passes one of
the two possible tangents as in Figure 10(5). Therefore, we always
compute the rolling attachment points a+ and a− for hybrid at-
tachments. If the attachment point moves beyond one of the rolling
attachments, we change the type of the link back to rolling. The
orientation might have to be adjusted such that the correct tangent
is chosen.

Algorithm 2 Extended Features
1: for all links do
2: s← surfaceDist(al ,ar) or user specified
3: end for
4: ...
5: procedure TIMESTEP

6: ...
7: for all cable joints do
8: sl ← sl− surfaceDist(al ,a′l)
9: sr← sr + surfaceDist(ar,a′r

10: end for
11: for all links do
12: if s < 0 and type = hybrid rolling then
13: type← hybrid attachment
14: else if type = hybrid attachment then
15: compute rolling attachments a+ and a−

16: if surfaceDist(a+,a)< 0 then
17: type← hybrid rolling positive
18: else if surfaceDist(a+,a)> 0 then
19: type← hybrid rolling negative
20: end if
21: end if
22: end for
23: for all rolling links with s < 0 do
24: merge adjacent joints; set inactive
25: end for
26: for all cable joints intersecting inactive link l do
27: split joint using l; set l active
28: end for
29: runSolver()
30: end procedure

(1) (2) (3) (4) (5)

𝐚−

𝐚+

Figure 10: A hybrid link. As long as there is enough cable on the
wheel the link acts like a rolling link (red) (1). When the cable is
used up it switches to an attachment (green) (2) - (4). It remains
an attachment until the attachment point passes one of the rolling
attachments a− or a+ (5). In this case the orientation of the body
might have to be adjusted to match the actual tangent.
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(𝑎) (𝑏)

Figure 11: Merge and split events: (a) If the amount of cable stored
on a body becomes negative, the left joint is removed and its rest
length added to the rest length of the right joint. (b) If the tangent
of a joint intersects a body, a new cable joint is created. The rest
length is split such that the tension remains constant.

4.2. Merges and Splits

Cable joints allow the simulation of dynamically changing environ-
ments too. For this, joints have to be removed and added dynam-
ically. We do this by performing merge and split events as shown
in Figure 11. A cable joint is deleted in a merge event shown in
Figure 11(a). A merge event is triggered when two cable joints are
adjacent to a body via rolling links and the amount of cable con-
tained on the body becomes negative. In this case we remove the
second joint, add its rest length to the rest length of the first joint
and link the first joint to the third body.

Cable joints are created during a split event as shown in Fig-
ure 11(b). A split event is triggered when the tangent of a cable
joint intersects a non-adjacent body. The first joint is redirected to
the new body and a new joint is created that connects the intersect-
ing body with the second body of the original joint. The rest length
of the original joint is distributed among the new joints such that
the tension on both sides are equal.

In a split event, a cable plane for the new link needs to be de-
termined. Such a plane could be chosen based on the location of
the cable and the adjacent objects. In our implementation we use a
simpler but more restricted variant though. In merge events we do
not remove a link but only mark it as inactive. In a split event we
only check collisions against existing links and re-activate them.

5. Results

Scene Cable Joints Iterations Time per frame
Simple 4 1 0.012 ms
Servin 16 10 0.25 ms
Pulley 6 15 0.3 ms
Hand 28 20 1.7 ms
Gym 16 20 2.5 ms
Hilbert2 62 10 1.8 ms
Hilbert3 498 10 60 ms

Table 1: Timings

Figure 12: A simple setup to show that our approach computes
accurate forces. The objects have a density one 1kg/m3 and of
1000kg/m3 on the left and right, respectively. The accuracy, sta-
bility and convergence are identical.

Figure 13: A replication of an example used in [SLNB11].

For our performance measurements we used a system with a
Core-i7 CPU at 3.5 Ghz and 32 GB of RAM. Figure 12 shows a
simple setup we used to perform a first set of tests. A cable with
3 attached bodies runs over two cylinders. The bodies on the left
both have a volume of 1m3 and the volume of the body on the right
is 2m3 while we set gravity g = 10m/s2. The density of the bodies
are 1kg/m3 on the left and 1000kg/m3 on the right experiment. The
first observation is that our method computes the correct forces on
all the cable joints shown in red. The accuracy, stability and con-
vergence are identical and independent of the densities because we
do not have to deal with the mass-ratio of the objects and the ca-
ble. With 10 solver iterations per frame, this example runs at 0.036
ms per frame. As the accompanying video shows, going down to
a single iteration still yields reasonable results. The accuracy of
the forces remains about the same while the error in distance in-
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Figure 14: Simulating the cable with 100 jointed rigid body seg-
ments. Even with 100 iterations, the cable is elastic. When it
bounces back it loses contact and falls of.

Figure 15: The compliance formulation yields correct forces and
elongations in the elastic case.

creases to about 5 percent. With a single iteration, the performance
increases to 0.012 ms per frame.

Servin et al. [SLNB11] report 0.4 to 0.8 ms per frame for their
multi-resolution approach and a single cylinder with two attached
bodies. If we assume that the difference in complexity of the model
compensates for the increase of processor speed since their pub-
lication we are 30 to 60 times faster. In another comparison we
reproduced one of their more complex examples in Figure 13. Un-
fortunately they do not provide timings for this scene. With 10 iter-
ations, we get a faithful reproduction of the behavior with 0.25 ms
per frame which is still faster then their simple scene with a single
cylinder.

We also compared our method to a naïve approach of represent-
ing the cable with a sequence of jointed rigid bodies – 100 in the
example (see Figure 14). Even with 100 Gauss-Seidel iterations
the cable remains elastic and falls off the cylinders when it bounces
back.

Because our solver supports compliant constraints, we can also
simulate elastic cables as shown in Figure 15. The compliance (in-

Figure 16: A one-to-four gear. With a one to four mass ratio (top),
the system is in equilibrium.

Figure 17: Left: Merging and splitting of the cable. Right: Hybrid
links with different inital rest lengths on the wheels.

verse stiffness) is set to 0.01m/N on the left with the expected
elongations on the cables. On the right we set the compliance to
0.1m/N. Now the bodies hit the ground reducing the forces and
elongations.

Figure 16 shows a scene with a one-to-four gear. As expected,
only for a one to four mass ratio of the attached bodies the system
is in equilibrium (top). Similarly, the pulley in the center of Figure 1
shows the expected behavior.

The setup on the left of Figure 17 demonstrates splitting and
merging of a cable as it touches or leaves a body. The experiment
on the right shows the behavior of hybrid links. With an increasing
initial amount of cable on each wheel (stored as a scalar value), the
bodies fall further down until the link turns from rolling to fixed.

To test pinhole constraints we created the robot hand model
shown on the left of Figure 1. The stretching tendons on the back of
the fingers are elastic and interact via rolling contacts. The contract-
ing tendons on the inside run through pinholes. With 20 iterations,
a time step takes 1.7 ms.

To demonstrate the efficiency of our approach and the ability to

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



M. Müller et al. / Cable Joints

Figure 18: A second degree 3d Hilbert curve connected by a cable.
Top: The cable is stretched and the wheels start to turn immediately
after the motor is turned on. Bottom: With a loose cable, the wheels
start to turn one by one after each segment becomes stretched. In
this case, the wheels would have to be indented to prevent the cable
from falling off.

simulate loose and tight parts within the same cable we connected
a level two 3d Hilbert curve [Hil91] as shown in Figure 18. On
the top the cables are stretched. After the motor is turned on, all
the wheels immediately start to turn. On the bottom the cables are
loose. Now, the wheels start to turn one after the other because each
segment hast to be stretched before the force propagates to the next
wheel. The scene runs at 1.8 ms per frame with 10 iterations. For
fun we also created a level three Hilbert curve with 8×8×8 wheels
as shown on the right of Figure 1. With 100 iterations it runs at 60
ms per frame.

Cable joints allow the simulation of systems under high tension
as the example in Figure 19 shows. To capture the fast vibrations
of the bow’s string we used 10 sub-steps, i.e. time steps per visual
frame with 10 iterations each, resulting in 25 ms per frame.

Finally, in Figure 20 we simulate a cable machine and show how
a single stack of weights is enough to create the desired forces on
the different handles.

6. Conclusion and Future Work

We have presented a new method to simulated cable-driven sys-
tems. The introduction of cable joints as generalizations of regular

Figure 19: Our approach allows the simulation of systems under
high tension. For a fine time resolution we use 10 sub-steps i.e. time
steps per visual frame.

Figure 20: The simulation of a cable machine showing how a sin-
gle stack of weights is enough to create the desired forces on the
different handles.

distance joints allows the simulation of cables in a simple, effective
and robust way and the integration into existing solvers. We showed
that the concept of cable joints alone can model complicated sce-
narios for which elaborate simulation techniques have been used
before.

As we showed, omitting the simulation of the cable itself is a
reasonable simplification but it is also a limitation of the method. A
possible extension would be to combine cable joints with existing
methods to model the cable between contact points. This would im-
prove the visualization and increase the accuracy of the split event
which is mostly affected by the assumption of straight cables.
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Appendix A: Wheel Tangents

For convenience we provide pseudo code to compute the tangent
points on wheels based on the wheel’s orientations.

Algorithm 3 Tangent Point Circle
1: procedure TANGENTPOINTCIRCLE(p1, p2 , r)
2: d← p2−p1
3: if |d|> r then

4: α←
{

arcsin(dy/|d|) if dx ≥ 0
π− arcsin(dy/|d|) otherwise

5: φ← arcsin(r/|d|)

6: α←
{

α−π/2−φ) orientation positive
α+π/2+φ otherwise

7: return p2 + r
[

cos(α)
sin(α)

]
8: end if
9: end procedure

Algorithm 4 Tangent Circle Circle
1: procedure TANGENTCIRCLECIRCLE(p1, r1, p2, r2)
2: d← p2−p1

3: r←
{

r2− r1 orientations equal
r1+ r2 otherwise

4: if |d|> r then

5: α←
{

arcsin(dy/|d|) if dx ≥ 0
π− arcsin(dy/|d|) otherwise

6: φ← arcsin(r/|c|)
7: if orientations equal then

8: α1←
{

α−π/2−φ) orientation 1 positive
α+π/2+φ) otherwise

9: α2←
{

α−π/2−φ) orientation 2 positive
α+π/2+φ) otherwise

10: else
11: α1←

{
α−π/2+φ) orientation 1 positive
α+π/2−φ) otherwise

12: α2←
{

α−π/2−φ) orientation 2 positive
α+π/2+φ) otherwise

13: end if
14: return p1 + r1

[
cos(α1)
sin(α1)

]
, p2 + r2

[
cos(α2)
sin(α2)

]
15: end if
16: end procedure
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