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Figure 1: Bunnies parachute into a pool of water. Cloth, rigid bodies and fluids coupled through constraints interact seamlessly in our
framework.

Abstract

We present a unified dynamics framework for real-time visual ef-
fects. Using particles connected by constraints as our fundamental
building block allows us to treat contact and collisions in a unified
manner, and we show how this representation is flexible enough to
model gases, liquids, deformable solids, rigid bodies and cloth with
two-way interactions. We address some common problems with
traditional particle-based methods and describe a parallel constraint
solver based on position-based dynamics that is efficient enough for
real-time applications.
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1 Introduction

Unified solvers have become popular tools in offline visual effects
in recent years. Notable examples include Maya’s Nucleus solver
[Stam 2009] and Softimage’s Lagoa. We were inspired by the fea-
tures of these packages, and our goal here is to create a unified
solver capable of simulating gases, liquids, deformable solids, rigid
bodies, and cloth, interacting with one another in real-time.

The concept of a unified dynamics solver is attractive. Having a
single piece of software that can simulate multiple object types that
were previously handled by specialized solvers means less code to
write, optimize, and maintain. Additionally, objects that were pre-
viously simulated in isolation can now interact with each other in
a fully coupled way. In this paper we present a unified approach
that makes some compromises in realism to meet our goal of real-
time performance, but enables a wider range of effects than was
previously possible. Our framework is built on the position-based
dynamics method (PBD) [Müller et al. 2007] which is popular in
computer games and interactive applications for its simplicity and
stability.

Our paper is organized as follows: first we discuss our particle-
based representation (section 3), we then present our general pur-
pose parallel constraint solver (section 4) followed by the constraint
types used in our solver (sections 5-8). Our main contributions are
summarized below:

• Extending constraint averaging to PBD to support parallel ex-
ecution (section 4)

• Approximate shock propagation to increase convergence of
rigid stacks (section 5.2)

• Static and dynamic friction in PBD (section 6.1)

• Two-way fluid solid coupling (section 7.1)

• Gas simulation with PBD (section 7.2)

http://doi.acm.org/10.1145/2601097.26
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2 Related Work

There has been increasing work towards unified simulation models
recently, and point-based methods are well suited to the problem.
Müller et al. [2004a] use a point based representation to model elas-
tic and plastic solids that can topologically deform. Solenthaler et
al. [2007] described a method for simulating fluids and solids based
on smoothed particle hydrodynamics (SPH). Becker et al. [2009]
improve the rotational invariance of their method using a co-rotated
deformation model based on SPH. Martin et al. [2010] address is-
sues with degenerate particle configurations using elastons which
provide a more accurate measure of local deformation. In contrast
to these methods we do not use a unified constitutive model based
on continuum mechanics. Rather, we prefer to combine custom
position-level constraints for each material we wish to simulate.

Gascuel and Gascuel [1994] used displacement constraints to ani-
mate rigid bodies and articulated figures. Their work was extended
by Faure [1999], and position-based dynamics [Müller et al. 2007]
can be seen as a generalization of their method. To simulate rigid
bodies, Gascuel and Gascuel [1994] converted position displace-
ments into rigid transformations by first finding a suitable rotation
and then applying a matching translation. Their method favors
rotation over translation, so we instead use rigid shape-matching
[Müller et al. 2005] which finds the least-squares best transform.
Stam [2009] built a unified solver using constrained simplices,
while in the context of real-time simulation, Jakobsen [2001] used
particles connected by constraints to model articulated characters.
Müller and Chentanez [2011b] use an oriented particle representa-
tion connected by shape matching and distance constraints to model
elastic and plastic solids.

One aspect of unified simulation of particular interest is two-way
interaction of fluids and solids. Carlson et al. [2004] presented a
method to couple rigid bodies with a grid-based fluid simulation.
Carlson [2004] also simulate rigid, melting and flowing materials
in a unified way. Guendelman et al. [2005] show how to couple Eu-
lerian fluid simulations to solid and thin-shell deformables. A full
discussion of grid-based methods is, however, beyond the scope of
our paper. Coupling particle fluids with rigid bodies was explored
by Müller et al. [2004b] who couple a SPH fluid simulation to mesh
based deformable objects. Clavet et al. [2005] couple fluids with
rigid bodies by treating particles as hard spheres and applying im-
pulses to a traditional rigid body simulator. Akinci et al. [2012]
couple SPH fluids with rigid bodies using more accurate boundary
force calculations, and extend their method to handle deformable
solids in [Akinci et al. 2013b]. In contrast to these works, we sim-
ulate fluids and rigid bodies inside the same framework.

In addition to the work discussed here, we will refer to more specific
related work in the respective sections.

3 Particle Representation

We choose particles as the fundamental building block for all object
types. Particles are attractive for their simplicity and ease of imple-
mentation, while being flexible enough to represent the range of
objects we wish to simulate. By constructing all objects from parti-
cles, we significantly reduce the number of collision types we need
to process, and avoid complex algorithms for generating contacts
between mesh based representations. Particles also provide a natu-
ral granularity at which to express parallelism. To take advantage
of modern graphics processors (GPUs) we prefer algorithms that
consider many simple particle interactions in parallel, over more
advanced algorithms that run serially.

Our core particle state consists of the following properties:

s t r u c t P a r t i c l e
{

f l o a t x [ 3 ] ;
f l o a t v [ 3 ] ;
f l o a t invmass ;
i n t phase ;

} ;

We extend the common dynamics quantities with a particle phase
identifier. This integral value is used to organize particles into
groups, and provides a convenient way to adjust their properties and
control how they interact, for example, disabling collisions between
groups of particles. We restrict ourselves to a fixed particle radius
per scene in order to leverage efficient collision detection based on
uniform grids.

4 Parallel SOR Solver

4.1 Background

Our system is built around a general purpose constraint solver that
is derived from position-based dynamics. We give some back-
ground on position-based dynamics here, but refer the reader to
[Müller et al. 2007] and [Bender et al. 2014] for more informa-
tion. PBD solves a system of non-linear equality and inequality
constraints such that

Ci(x + ∆x) = 0, i = 1, . . . , n (1)
Cj(x + ∆x) ≥ 0, j = 1, . . . , n. (2)

where x = [x1,x2, . . . ,xn]T is the vector of particle positions.
Constraints are typically solved through Gauss-Seidel iteration,
where each constraint is solved sequentially using the linearization
of C around x,

Ci(x + ∆x) ≈ Ci(x) +∇Ci(x)∆x = 0. (3)

The position change ∆x, is restricted to lie along the constraint
gradient, and is weighted by the inverse of the mass matrix M =
diag(m1, · · · ,mn),

∆x = M−1∇Ci(x)Tλi. (4)

Combining Eq. (3) and (4), λi is given by

λi = − Ci(x)

∇Ci(x)M−1∇Ci(x)T
. (5)

Typically positions are updated after each constraint is processed,
and after a number of iterations a change in velocity is computed
according to the total constraint delta

∆v =
∆x

∆t
. (6)

4.2 Optimization Viewpoint

Here we present another perspective on position-based dynamics
by viewing it as the solution to a constrained optimization problem.
Considering only equality constraints, the problem to be solved can
be stated as:

minimize 1
2
∆xTM∆x

subject to Ci(x + ∆x) = 0, i = 1, . . . , n
(7)



The solution variable ∆x is the change in position such that the
constraints are satisfied. According to Eq. (6) the resulting change
in position is equivalent to applying an impulse at the beginning of
the time-step. As such, the problem is equivalent to finding the min-
imum change in kinetic energy that satisfies the constraints, which
is consistent with Gauss’s principle of least constraint.

If the constraint functions were linear, then (7) would be a con-
strained quadratic minimization problem (QP) with a closed form
solution. In practice, the constraints are arbitrary non-linear, non-
convex functions, for which fast and globally optimal solvers do
not exist [Boyd and Vandenberghe 2004]. Position-based dynam-
ics proceeds in the spirit of sequential convex programming (SCP)
by linearizing the constraints and solving a sequence of local con-
strained quadratic minimizations:

minimize 1
2
∆xTM∆x

subject to J∆x = b
(8)

where J = ∇C(x), and b = [−Ci, . . . ,−Cn]T . Problems of this
type (minimizing a quadratic objective with linear constraints) can
be transformed into the following optimality conditions:

M∆x = ∇JTλ (9)
J∆x = b (10)

The first condition comes from the theory of Lagrange multipliers
where the left-hand side is the gradient of the objective function,
and the second condition comes from from the feasibility require-
ment. Equations (4) and (5) follow immediately from these condi-
tions, and when considering the system as a whole, we can elimi-
nate ∆x and write [

JM−1JT
]
λ = b. (11)

Eq. (11) is a matrix equation for the linearized problem. This is
similar to the fast projection of Goldenthal et al. [2007]. However,
in PBD, the matrix is never explicitly formed, and rather than solve
for λ exactly, PBD applies a single Gauss-Seidel iteration over (11)
before updating x and restarting the problem. Projected Gauss-
Seidel is used in the presence of inequality constraints.

Gauss-Seidel iteration is inherently serial, so to increase parallelism
we solve constraints in a projected Gauss-Jacobi fashion. Unfortu-
nately, Jacobi iteration is not guaranteed to converge if the system
matrix is not positive definite. In some cases this is not a problem
and Macklin and Müller [2013] successfully used Jacobi iteration
to simulate fluids in the position-based framework using constraint
regularization. However, for many common constraint configura-
tions it is clear that a solution will not be reached. We illustrate the
problem by considering a 1-dimensional particle constrained to the
origin by two identical distance constraints (Figure 2).

Figure 2: A particle constrained to lie at the origin by two identical
distance constraints.

In this example, the system of constraint equations to solve is:

C1(x) = x = 0

C2(x) = x = 0

Because the two constraints are identical, J is rank deficient, and
the system matrix is singular. Although Gauss-Seidel iteration
would find a solution, Jacobi iteration will oscillate between two
fixed solutions indefinitely (the positive and negative side of the
origin). If the constraints are not identical but merely close, then
the condition number of the matrix is large and convergence will be
slow. Situations like this are common in practice.

To address this problem, we apply under-relaxation based on the
concept of constraint averaging [Bridson et al. 2002], or mass-
splitting [Tonge et al. 2012]. We first process each constraint in
parallel and accumulate position deltas for each particle. At the end
of the iteration, once all constraints are processed, we divide each
particle’s total constraint delta by the number of constraints affect-
ing it,

∆xi =
1

n

∑
n

∇Cjλj . (12)

This form of local relaxation is not guaranteed to conserve mo-
mentum when neighboring particles have differing number of con-
straints, however visual errors are typically not noticeable.

4.3 Successive Over-Relaxation

Averaging constraint forces as described above ensures conver-
gence, but in some cases this averaging is too aggressive and the
number of iterations required to reach a solution increases. To ad-
dress this we introduce a global user-parameter ω which controls
the rate of successive over-relaxation (SOR),

∆xi =
ω

n

∑
n

∇Cjλj . (13)

In all our simulations we have used 1 ≤ ω ≤ 2, although higher
values may be used depending on the scene being simulated. Ad-
ditional under-relaxation (ω < 1) is not typically required as the
constraint averaging is sufficient to avoid divergence.

In practice it can be desirable to have some constraint types take
precedence over others. To achieve this, we process constraints in
groups and immediately apply the accumulated position delta to
the particle positions before the next constraint group is processed.
Typically, all constraints of the same type are processed in the same
group. For example, after processing all density constraints in par-
allel, the accumulated delta can be applied to our candidate position
x∗ before processing contact constraints in parallel (steps 17-21 in
Algorithm 1). This method also propagates constraint corrections
faster which improves convergence speed.

4.4 Initial Conditions

A common situation is for constraints to be violated at the begin-
ning of a time-step. This could occur, for example, due to conver-
gence not being reached at the end of the last step, or a kinematic
object being moved to an invalid state in response to user input.
Due to the way position-based dynamics solves constraints, these
invalid initial conditions may cause kinetic energy to be added to
the system in an undesirable manner. To illustrate the problem, we
consider a particle initially interpenetrating the ground (Figure 4).
The position-based solver calculates the corrected position at the
surface x∗, projects the particle there and updates the velocity ac-
cording Eq. (6).

This new velocity causes the particle to continue to travel upwards
and ‘pop’ out of the ground. What’s worse, this incorrect veloc-
ity becomes larger as the time-step decreases! This is a serious
problem for stable stacking and can cause obvious non-physical



Figure 3: Showing the Stanford bunny at different sizes sampled by particles.

Figure 4: A particle with zero velocity is interpenetrating the
ground at the beginning of the time-step (left). Position-based dy-
namics projects the particle to the surface and updates velocity ac-
cording to this movement (middle). The resulting velocity causes a
change of momentum and the particle to continue out of the ground
(right).

behavior such as cloth bouncing off the ground. One way to view
this correction of initial error is as a Baumgarte stabilization [As-
cher et al. 1995] with a stiffness factor of 1. The differential al-
gebraic equations (DAE) community have long known about the
drawbacks of Baumgarte stabilization and have moved to pre- and
post-stabilization techniques that modify position independent of
velocity. For further reading we refer to [Weinstein et al. 2006],
which provides a good overview of stabilization methods from a
computer graphics perspective.

We address this issue by optionally performing a pre-stabilization
pass on the initial positions in order to move particles to a valid
state. The process involves first predicting new positions, generat-
ing contacts, and then solving the resulting contact constraints with
the original, rather than predicted positions. Any deltas applied
to the original positions are also applied to the predicted positions
before the main constraint solving loop begins. In practice we per-
form this pre-stabilization only for contacts, as this is the most vis-
ible source of error. If convergence is not fully reached during this
pre-stabilization pass then some energy may still be added to the
system, however 1-2 iterations is usually sufficient to resolve most
visual artifacts.

4.5 Particle Sleeping

Positional drift may occur when constraints are not fully satisfied
at the end of a time-step. We address this by freezing particles in
place if their velocity has dropped below a user-defined threshold,

x(t + ∆t) =

{
x∗, |x∗ − x0| > ε

x0, otherwise
(14)

Algorithm 1 Simulation Loop

1: for all particles i do
2: apply forces vi ⇐ vi + ∆tfext(xi)
3: predict position x∗i ⇐ xi + ∆tvi
4: apply mass scaling m∗i = mie

−kh(x∗i )

5: end for
6: for all particles i do
7: find neighboring particles Ni(x∗i )
8: find solid contacts
9: end for

10: while iter < stabilizationIterations do
11: ∆x⇐ 0, n⇐ 0
12: solve contact constraints for ∆x, n
13: update xi ⇐ xi + ∆x/n
14: update x∗ ⇐ x∗ + ∆x/n
15: end while
16: while iter < solverIterations do
17: for each constraint group G do
18: ∆x⇐ 0, n⇐ 0
19: solve all constraints in G for ∆x, n
20: update x∗ ⇐ x∗ + ∆x/n
21: end for
22: end while
23: for all particles i do
24: update velocity vi ⇐ 1

∆t
(x∗i − xi)

25: advect diffuse particles
26: apply internal forces fdrag, fvort
27: update positions xi ⇐ x∗i or apply sleeping
28: end for

5 Rigid Bodies

Harada [2007] and Bell et al. [2005] used a particle representation
to simulate rigid bodies with a penalty force model, while Tonge
et al. [2010] used particles to detect contacts for a constraint based
GPU rigid body solver. An alternative approach is to construct rigid
bodies by connecting particles with a lattice of distance constraints,
however this method requires many iterations to appear stiff.

We represent non-convex rigid bodies using particles, and use rigid-
shape matching constraints [Müller et al. 2005] to maintain particle
configurations. Shapes are created by first performing solid vox-
elization of a closed triangle mesh and placing particles at occupied
cells interior to the shape. We then assign all particles in the shape
the same phase-identifier, disable collision between them, and add
a shape-matching constraint to the system.

During simulation we treat particles as if they were unconnected,
subjecting them to displacements from the other constraint types.
We then find the least squares best transform that maps the rest-



positions to the deformed state and transform particles accordingly
(Figure 5). This deformation and re-targeting is similar to the ap-
proach taken by Bao et al. [2007] in the context of a finite element
simulation.

The position delta due to a shape-matching constraint is given by

∆xi = (Qri + c)− x∗i (15)

where Q is a rotation matrix given by the polar-decomposition of
the deformed shape’s covariance matrix A, calculated as:

A =

n∑
i

(x∗i − c) · rTi (16)

where ri is the particle’s offset from the center of the mass in the
rest configuration, and c is the center of mass of the particles in
the deformed configuration. The evaluation of Eq. (16) can be per-
formed efficiently in parallel by assigning a thread per particle to
calculate each outer product and then forming A using a parallel
reduction across all threads in the shape.

Figure 5: Showing how shape matching constraints map deformed
particles back to a rigid pose.

We note that using this method we never explicitly store the rigid
body’s linear or angular velocity, as these are given implicitly by
the particle state. The shape matching step automatically respects
the inertial properties of the object, making this a very simple rigid
body simulator.

One limitation of this method is that, when using particles with a
fixed radius r, the number of particles required to represent a given
shape grows proportional to O(n3) where n = 1

r
. This places a

limit on the maximum size ratio that can be efficiently represented,
so for real-time simulations we suggest a rule of thumb of 1:10
between the smallest and largest feature (see Figure 3). Placing
particles in a thin layer around the surface can reduce the number
of particles required to O(n2), although this places some time-step
restrictions in order to prevent tunneling.

Figure 6: Rigid groups of particles can interpenetrate and become
locked together due to discrete collision handling.

5.1 Sparse Signed Distance Field Collision

To resolve collisions, Harada [2007] used discrete element forces
between pairs of particles belonging to rigid bodies. The simplicity
of this approach is attractive as only local collisions between par-
ticle pairs need be considered. However, if tunneling occurs then
bodies can interlock and fail to separate (Figure 6). We address this

problem using a new particle collision algorithm based on a sparse
signed distance field (SDF) representation.

Guendelman et al. [2003] used signed distance fields to generate
contacts between non-convex rigid bodies by point sampling trian-
gle mesh features within each overlapping shape’s SDF. Collisions
are then resolved using an sequential, iterative scheme where each
feature is projected out of the shape in order of deepest penetration
first. In contrast to Guendelman et al. [2003] who use grid-based
SDFs, we sample our field function onto each particle belonging to
a rigid shape. By storing the SDF on particles we are able to re-use
all the machinery of our particle-particle collision detection to re-
solve deeper overlaps between shapes. We store both the magnitude
φ and gradient∇φ of the SDF at each particle’s location (Figure 7)
which can be viewed as an approximate first order, sparse represen-
tation of the underlying field. Higher order representations are also
possible, as described in [Corbett 2005].

Figure 7: We store a signed distance field value and its gradient
per particle to prevent rigid interpenetration and locking. Note that
particles on the medial axis are assigned a gradient direction arbi-
trarily.

To resolve collisions with this representation we first detect over-
laps between particles with distance |xi − xj | < r. As the contact
normal we choose the SDF gradient corresponding to the minimum
translation distance, d = min(|φi|, |φj |).

nij =

{∇φi if |φi| < |φj |
−∇φj otherwise

(17)

The position delta for each particle is then given by

∆xi = − wi
wi + wj

(d · nij) (18)

∆xj =
wj

wi + wj
(d · nij), (19)

where wi = 1/mi.

The signed distance field is often undersampled near the surface of a
shape which can lead to discontinuous penetration depths and jitter-
ing. To address this we treat boundary particles (those with |φ| < r)
separately from the method for interior particles described above.
When a collision between a boundary particle and another particle
is detected, we modify the contact normal according to [Müller and
Chentanez 2011a], and use d = |xi − xj | − r, effectively treating
boundary particles as one-sided hard spheres.

This modified boundary normal (Figure 8) can be computed effi-
ciently as the reflection of the collision direction around the SDF
gradient (from Eq. 17) when a particle lies in the negative half-
space of the particle.

n∗ij =

{
xij − 2(xij · nij)nij xij · nij < 0

xij otherwise
(20)



Figure 8: Left: regular particle collision normals. Right: one sided
collision normals used for particles on the rigid shape’s boundary.

A limitation of this approach is that particle surfaces are not entirely
smooth. To reduce bumping and artificial sticking, we ensure some
overlap between particles in the rest pose.

Figure 9: 1000 non-convex objects, each consisting of 44 parti-
cles, form a pile. Two-substeps and two-constraint iterations are
computed in 4ms/frame.

5.2 Stiff Stacks

Jacobi methods can only propagate information (collision deltas)
over a distance of one particle per iteration. This can lead to large
of piles rigid bodies requiring many iterations to appear stiff. One
method for increasing the rate of information propagation is shock
propagation [Guendelman et al. 2003]. Shock propagation works
by iterating bodies from the ground upwards, fixing each layer
of bodies in place after they have been processed. Unfortunately
this process is inherently serial (layers are processed one at a time
in a sequential fashion). Here we present a new, parallel-friendly
method to improve the stability of rigid stacks that does not require
changing iteration order.

First, we estimate the stack height of each particle, h. This may
be done through a contact graph search, or field propagation, from
the solid boundary. The main requirement is that the height func-
tion increases in the direction opposite gravity. In our examples we
have used a simple heuristic function measuring height from a fixed
ground plane.

Once we have an estimate of stack height, we temporarily modify

each particle’s mass such that lower particles have a larger mass
than the ones above. In our experiments, we found the following
exponential function works well as a scale factor for particle mass,

si(xi) = e−kh(xi) (21)

where h(xi) is the stack height for a particle. In the case that h(xi)
is equal to height from the ground plane then this scaling function
provides a constant mass ratio of si/sj = e−kr for two particles
i and j stacked a distance r apart. The resulting mass ratio causes
lower particles to feel less pressure and to resist compression. This
causes stacks of bodies to converge to a solution much faster (Fig-
ure 10). In our rigid piling scenes we have typically used values of
k ∈ [1 . . . 5].

The scaled particle mass m∗i = simi is used only during the con-
tact processing phase and is reset post-constraint solve. Because
each particle is processed independently, we can perform this mass
adjustment in parallel (step 4 in Algorithm 1).

We note that our method is not specific to particle-based solvers
and may be applied equally well in the context of a traditional rigid
body solver. However a potential limitation of this method is that
if the coefficient k is set too high then the lower particles will stop
responding to interaction from above. One solution to this problem
is to perform mass modification only in the final solver iteration,
however we have not found this to be necessary in order to achieve
good results.

Figure 10: Left: A 1x1x10 stack of rigid bodies 2m high com-
ing to rest under gravity. Particles are color coded by our stack
height function (section 5.2). Right: without our mass modification
the stack oscillates for a long time and shows significant compres-
sion (blue). Using our method (red) the stack stabilizes quickly and
comes to rest closer to the true solution (green).

5.3 Deformation

Each shape-matching constraint has an associated stiffness parame-
ter that allows us to model small scale elastic deformation. In addi-
tion, we can deform objects plastically using the method described
in [Müller and Chentanez 2011b]. Briefly, we detect when a particle
belonging to a rigid shape has been deformed past a user threshold.
We then mix this deformation back into the particle’s local-space
rest position according to a plastic creep coefficient. Because this
process invalidates our SDF field, we convert particles back to reg-
ular spherical particles if they deform past a certain threshold.

Currently we use a single shape-matching constraint per object,
which limits the amount of deformation possible. Larger defor-
mations can be supported by combining multiple shape-matching
constraints, or using methods such as oriented particles or tetrahe-
dral volume constraints, both of which can be accommodated in our
constraint framework.



Figure 11: A sand castle before collapse (left). After 300 frames
our position-based friction model maintains a steep pile (middle),
while the original position-based dynamics friction model has al-
most completely collapsed (right).

6 Granular Materials and Friction

We present our friction model in the context of granular materials
whose behavior is heavily dependent on frictional effects. We note,
however, that the same method presented here is used for all object
types in our framework.

Previous work by Bell et al. [2005] modeled granular materials
using the discrete element method and irregular groups of parti-
cles. Zhu and Bridson [2005] used the FLIP method to animate
sand, while Alduán and Otaduy [2011], and Ihmsen et al. [2012b]
used iterative Smoothed Particle Hydrodynamics (SPH) solvers to
model granular materials with friction and cohesion. Position-
based dynamics traditionally models friction by damping veloc-
ity after the position-based constraint solve has completed [Müller
et al. 2007]. This method cannot model static friction because the
frictional damping forces cannot correct for the position changes
already made during the constraint solve. Consequently, particle
positions drift, and piles quickly collapse. We address this problem
using a novel formulation that applies friction at the position level.

6.1 Friction Model

During contact handling, we first resolve interpenetration by pro-
jecting particles a distance d along the collision normal according
to the following non-penetration constraint,

C(xi,xj) = |xij | − r ≥ 0. (22)

Once interpenetration has been resolved, we calculate a frictional
position delta based on the relative tangential displacement of the
particles during this time-step

∆x⊥ =
[
(x∗i − xi)− (x∗j − xj)

]
⊥ n, (23)

where x∗i and x∗j are the current candidate positions for the collid-
ing particles including any previously applied constraint deltas, xi
and xj are the positions of the particles at the start of the time-step,
and n = x∗ij/|x∗ij | is the contact normal. The frictional position
delta for particle i is then computed as

∆xi =
wi

wi + wj

{
∆x⊥, |∆x⊥| < µsd

∆x⊥ ·min( µkd
|∆x⊥|

, 1), otherwise

(24)

where µk, µs are the coefficients of kinetic and static friction re-
spectively. The first case in Eq. (24) models static friction by re-
moving all tangential movement when the particle’s relative veloc-
ity is below the traction threshold. The second case models kinetic

Coulomb friction, limiting the frictional position delta based on the
penetration depth of the particle. The position change on particle j
is given by

∆xj = − wj
wi + wj

∆xi. (25)

Treating the frictional impulses this way allows us to generate large
particle piles with high angles of repose (Figure 11). However, as
with position-based dynamics generally, a limitation is that friction
strength is somewhat dependent on iteration count. Müller et al.
[2007] suggest a method to reduce this effect.

7 Fluids

We simulate fluids in our framework using the position-based fluids
method [Macklin and Müller 2013], where the fluid density con-
straint (Eq. 26) is considered simply as another constraint in the
system. In contrast to [Macklin and Müller 2013] we clamp the
density constraint to be non-negative (unilateral), so that it only acts
to separate particles,

C(x1, ...,xn) =
ρi
ρ0
− 1 ≤ 0, (26)

we then use the model of [Akinci et al. 2013a] to handle cohesion
and surface tension effects.

Figure 12: Assigning particles different masses gives rise to buoy-
ancy.

Figure 13: Two-phase liquid with a density ratio of 4:1 showing
the Rayleigh-Taylor instability.

7.1 Fluid-Solid Coupling

Akinci et al. [2012] show how to accurately couple SPH fluids with
rigid bodies by placing particles at solid boundaries and calculating



fluid pressure forces which are then input to a traditional rigid body
simulator. Our time-steps are typically large enough that we can-
not rely on fluid pressure to prevent interpenetration and tunneling.
Consequently, when a fluid particle comes into contact with a solid
particle, we treat both as solid particles with the fluid rest distance
used as the contact distance r.

We include solid particles in the fluid density estimation, so the
density for a fluid particle is then given by

ρi =
∑
fluid

W (xi − xj , h) + s
∑
solid

W (xi − xj , h) (27)

where h is width of the smoothing kernel W . The parameter s
accounts for any difference in sampling density between solid par-
ticles and fluid particles. If the distance between fluid particles at
the rest density is the same as solid particles then s can be set to 1.
If solids are sampled more densely than fluids then it should be set
< 1. Because s is a constant, we assume solid particles are sampled
at relatively uniform density. Akinci et al. [2012] use a per-particle
correction, however we have not found this to be necessary, partly
because we typically use regular particle samplings, and also be-
cause we do not rely on fluid pressure forces to resolve fluid-solid
interactions.

7.1.1 Buoyancy

The density constraint formulation of [Macklin and Müller 2013]
treats fluid particles as having equal mass, but by using the mass
weighted version of position-based dynamics (Eq. 4) we can sim-
ulate fluids and rigid bodies with differing densities. This simple
adjustment automatically gives rise to buoyancy and sinking of ob-
jects with differing mass ratios (Figure 12).

For the fluid density constraints, we pre-compute the denominator
in Eq. (5) for a reference filled particle configuration. During this
pre-computation step we assume that neighboring particles have the
same mass, so to ensure the subsequent position corrections from
Eq. (4) are conservative, the smallest expected particle mass in the
system should be used.

To simulate immiscible multi-phase liquids (Figure 13) we allow
fluid particles of different phases to contribute to each other’s den-
sity estimation. We apply cohesive and surface tension forces only
between particles of the same phase as in [Solenthaler and Pajarola
2008].

7.2 Gases

Grid-based methods have proved popular for animating gases and
smoke, in particular [Stam 1999] and [Fedkiw et al. 2001]. More
recently, Lagrangian discretizations for smoke have gained interest
in computer graphics, notably vortex methods such as [Park and
Kim 2005], and mesh-tracking methods [Pfaff et al. 2012][Brochu
et al. 2012]. Stam and Fiume [1995] were the first to apply SPH to
the simulation of gas and fire, and Gao et al. [2009] combined SPH
with a grid-based fluid solver to simulate fast moving gases.

We present a fully Lagrangian method for simulating gases based
on position-based fluids. Our method is sparse in the sense that it
only computes fluid dynamics in areas of visual interest, and, in
contrast to vortex particle methods which require special handling
for solid boundaries, our method handles solid boundary conditions
through simple position projection during the regular particle colli-
sion constraint pipeline.

Figure 14: A rising smoke plume simulated using position-based
fluids, this example uses 16k fluid particles (32x32x16) and 65k
smoke particles.

Figure 15: Slice from a smoke simulation with closed boundaries.
The domain is seeded with fluid particles (blue) and smoke particles
(white) are passively advected through the velocity field.

7.2.1 Closed Boundaries

To model smoke in closed environments, we begin by filling
the computation domain with fluid particles and reducing grav-
ity for gas particles according to a user parameter α, although
a temperature-based buoyancy model would work equally well if
tracking temperature per particle. We treat the gas as incompress-
ible and use the unilateral density constraint to maintain a fixed rest
density.

We inject visual smoke particles into the simulation domain and
passively advect them through the velocity field defined on the fluid
particles (Figure 14). To calculate the velocity at a smoke particle’s
location xs we use the following weighted averaging over fluid par-
ticles:

v(xs) =

∑
j vjW (xs − xj)∑
jW (xs − xj)

(28)

whereW (x) is any symmetric kernel function, e.g. the cubic Poly6
kernel given in [Müller et al. 2003], and vj is the velocity of a fluid
particle which overlaps the sampling location. Note that we use
the velocity calculated immediately after the constraint solve to en-
sure the velocity used for advection is consistent with the incom-
pressibility constraints (step 24 in Algorithm 1). We note that these
passive visual marker particles are useful in other contexts, for ex-
ample we also use them to represent spray and foam particles in
liquid simulation as in [Ihmsen et al. 2012a].



7.2.2 Open Boundaries

To generate plumes of smoke, we inject fluid particles and smoke
particles together, ensuring a 1-2 layer thick boundary of fluid par-
ticles surrounding the smoke particles at their emission point. Inte-
rior fluid particles are emitted with a higher velocity than the bound-
ary particles, and to model the effect of fast moving air interacting
with the surrounding environment we introduce a new drag force:

fdragi = −k(vi − venv)(1− ρi
ρ0

) (29)

where venv is the environmental velocity at the particle’s location.
In our examples, venv has been taken to be 0 to model still air,
however any procedural velocity field may be used. The last factor
on the right-hand side of Eq. (29) ensures that only particles near
the free surface experience drag. If smoke particles become isolated
from the fluid we revert them to ballistic motion, or advect them by
the procedural background velocity field. Additionally, fluid par-
ticles may be removed once they have no smoke particles within
their kernel radius, or after a pre-defined lifetime.

Because we do not simulate fluid where smoke does not exist, this
technique is not well suited to simulating long range effects, e.g.:
a gust of wind from a window disturbing smoke at the other end
of the room. However these types of effects may be approximated
using procedural techniques that modify the environment velocity
in Eq. (29). It is also important to ensure that there is a sufficient
sampling of fluid particles to provide accurate velocity estimates for
smoke particle advection. We use weak cohesive forces to maintain
particle density, although dynamic particle seeding strategies such
as Ghost SPH [Schechter and Bridson 2012] may be a better alter-
native.

Figure 16: Smoke interacting with cloth (left). Fluid particles are
only present where smoke is located (right).

7.2.3 Baroclinic Turbulence

Our drag model creates a velocity gradient that gives rise to some
interesting motion at the fluid boundary, however it is often desir-
able to introduce additional turbulent motion. Fedkiw et al. [2001]
introduced vorticity confinement to computer graphics in the con-
text of smoke simulation, and Selle et al. [2005] used vortex par-
ticles to add vorticity to grid-based smoke simulations. Pfaff et al.
[2012] use a mesh-based representation to model the smoke-air in-
terface where vortex sheets are generated for each triangle and edge
including a baroclinity term. [Kim et al. 2012a] use vortex particles
to model baroclinic turbulence in grid-based smoke simulations.

In this section, we present a turbulence model inspired by the La-
grangian vortex sheets method [Pfaff et al. 2012]. Unlike mesh-
tracking methods, we do not have an explicit surface representation,

instead we use the following unnormalized vector as an approxi-
mate surface normal

ni =
∑
j

mj

ρj
∇W (xi − xj). (30)

The magnitude of this vector provides a measure of how close to the
surface a particle is. Larger magnitudes indicate surface particles
and smaller magnitudes indicate interior particles. Note that Eq.
(30) is the standard SPH definition for the density gradient,∇ρ. We
combine it with the Boussinesq pressure gradient approximation
to evolve a per-particle vortex strength according to the following
differential equation

Dωi
dt

= ωi · ∇v + β(ni × g), (31)

where the first term is due to vortex stretching, and the second term
represents the baroclinity. β is an exposed parameter used to con-
trol the overall strength of the effect, and the velocity gradient ∇v
can be approximated using SPH gradient kernels. The final driving
force on a particle due to its neighbors is given by,

fvorti =
∑
j

(ωj × xij)W (xij). (32)

Good results can be obtained by using a high particle drag force
e.g.: k = 50, and allowing particle vorticity to drive the flow.

7.2.4 Rendering

Unlike grid-based solvers there is no built-in diffusion to La-
grangian schemes. To visually approximate diffusion of smoke den-
sity, we increase smoke particle size and decrease opacity over the
lifetime of the particle, similar to [Brochu et al. 2012]. For our
real-time renderer, we sort smoke particles according to depth from
camera and render them as point sprites. Light transmission ef-
fects are approximated by rendering particles as opaque points into
a shadow map and treating the light-space depth delta as input to an
exponential scattering function.

8 Cloth and Ropes

We build cloth models using networks of distance constraints (Fig-
ure 17) along triangle edges to model stretching, and across edges
to model bending. In addition to the basic distance constraint we
expose unilateral distance constraints (“tethers”) and use them as
long-range attachments to reduce stretching [Kim et al. 2012b].
Cloth self-collision and inter-collision with other cloth pieces is
handled automatically by the particle collision pipeline, but we note
this requires sampling the cloth surface with enough particles to
prevent tunneling. An aerodynamic model is applied to the cloth
by approximating each triangle as a thin airfoil and distributing lift
and drag forces to the triangle’s particles [Keckeisen et al. 2004] .

To model ropes, we connect chains of particles with stretch and
bending constraints, then extrude tessellated cylinders along their
path. More advanced rope models such as [Rungjiratananon et al.
2011] may be integrated into our solver and would allow modeling
of torsion. Inflatable objects can be modeled by combining a cloth
mesh with a volume constraint as described in [Müller et al. 2007].

9 Implementation Details

For particle neighbor finding, we use an efficient parallel hash-grid
[Green 2008]. Particle interactions are found using discrete over-
lap tests at the beginning of a time step, however if particles move



Figure 17: A flag blowing in the wind. Self-collision is automati-
cally handled by our particle-based collision pipeline.

significantly during constraint solving then subsequent new colli-
sions may be missed. To mitigate this, we allow expanding the
collision radius by a fixed percentage during the overlap checks.
This increases the number of potential colliders that are processed
so should be set as a small fraction of the particle radius.

Constraints may be solved in a particle-centric or constraint-centric
manner. In the particle-centric approach (Algorithm 2), we assign
a GPU thread per particle and loop over all constraints affecting
it, performing a single write operation per particle once all con-
straints are processed. Alternatively, we may solve constraints in
a constraint-centric manner (Algorithm 3) where each thread pro-
cesses a constraint and uses atomic operations to scatter position
deltas to each affected particle. In practice we use both methods
depending on the constraint type. For instance, fluid density con-
straints are solved in a particle-centric manner, and distance con-
straints are solved in a constraint-centric manner. Although scat-
tered writes based on atomic memory transactions are generally less
efficient, we have found this approach to be quite practical on cur-
rent GPU hardware. Coherence in memory transactions is improved
by re-ordering particle data according to the hash-grid cell index.

Particles are an inefficient choice of collision primitive for large
shapes such as walls and floors. We represent these kinematic
shapes using traditional representations such as convex hulls,
signed distance fields, and triangle meshes.

10 Results

We have implemented our solver in CUDA and timings for vari-
ous scenes were measured on an NVIDIA GTX680 GPU (Table 1).
These times do not include rendering, however all our results were
captured in real-time apart from the Rayleigh-Taylor scene which
consists of 300k particles and simulates in around 150ms per frame.
We render fluids using the ellipsoid splatting and screen-space sur-
facing described in [Macklin and Müller 2013].

Figure 1 shows fluids, rigid bodies, cloth and ropes together with
two-way interactions, the drag model on our cloth slows the rigid
bunnies descent via the connecting ropes. Figure 16 shows a frame
from a simulation where a cloth sheet falls knocking over rigid bod-
ies and then interacting with a smoke plume rising due to baroclinic
turbulence. Figure 18 shows water balloons built from a cloth mesh
filled with fluid particles. When the user pulls on the cloth mesh we
dynamically remove constraints allowing them to tear the mesh and
release the fluid. Because the fluid and cloth are two-way coupled,
the escaping fluid forces the balloon backwards.

Algorithm 2 Particle-Centric Solve (gather)

1: for all particles i in parallel do
2: initialize position delta ∆xi = 0
3: for all constraints c affecting i do
4: calculate constraint error λc, and gradient∇xiC
5: update delta ∆xi += wiλc∇xiC
6: end for
7: end for

Algorithm 3 Constraint-Centric Solve (scatter)

1: for all particles i in parallel do
2: initialize position delta ∆xi = 0
3: end for
4: for all constraints c in parallel do
5: calculate constraint error λc
6: for all particles i in c do
7: calculate constraint gradient∇xiC
8: atomically update particle delta ∆xi += wiλc∇xiC
9: end for

10: end for

Table 1: Performance results for several examples. A frame time of
16ms is used in all cases.

Scene particles diffuse steps/frame iters/step ms/frame
Bunny Splash 50k 30k 2 4 10.1
Bunny Pile 44k - 2 2 3.8
Smoke Cloth 10k 100k 2 6 5.6
Sandcastle 73k - 2 12 10.2
Water Balloons 29k - 3 12 12.1

11 Limitations and Future Work

In the future, we would like to remove the requirement of fixed par-
ticle sizes through the use of hierarchical acceleration structures.
This would allow rigid bodies and fluids to be simulated more ef-
ficiently. Solving certain constraint types at different frequencies
would also improve efficiency as in [Stam 2009].

Particles alone cannot accurately represent large flat surfaces, and
our first order SDF is not accurate enough to provide useful col-
lision normals near the surface of poorly sampled shapes. Using
a quadratic basis function, as in [Corbett 2005], and reconstructing
the signed distance value (instead of point sampling) could improve
results for sparse samplings.

Shape-matching convergence is dependent on the total number of
particles in the shape. This makes our method more suitable to
smaller debris-like rigid bodies, and less suitable for large shapes.
Buoyancy is also affected by the number of particles in the shape
because the slower convergence makes the rigid body behave as if
it were heavier. Consequently, our mass ratios do not correspond to
real-world submergence depths.
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Figure 18: A user interacts with water balloons built from a cloth
mesh and filled with fluid particles under pressure. The user can
tear the balloons by pulling on the cloth, releasing the fluid.
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