
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

Real-time Simulation of Large Bodies of Water
with Small Scale Details

Nuttapong Chentanez and Matthias Müller

NVIDIA Corporation

Abstract

We present a hybrid water simulation method that combines grid based and particles based approaches. Our spe-
cialized shallow water solver can handle arbitrary underlying terrain slopes, arbitrary water depth and supports
wet-dry regions tracking. To treat open water scenes we introduce a method for handling non-reflecting boundary
conditions. Regions of liquid that cannot be represented by the height field including breaking waves, water falls
and splashing due to rigid and soft bodies interaction are automatically turned into spray, splash and foam par-
ticles. The particles are treated as simple non-interacting point masses and they exchange mass and momentum
with the height field fluid. We also present a method for procedurally adding small scale waves that are advected
with the water flow. We demonstrate the effectiveness of our method in various test scene including a large flowing
river along a valley with beaches, big rocks, steep cliffs and waterfalls. Both the grid and the particles simulations
are implemented in CUDA. We achieve real-time performance on modern GPUs in all the examples.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling, Physically Based Modeling—Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism, Animation—Simulation and Modeling [I.6.8]: Type of Simulation, Animation—

Keywords: natural phenomena, physically based animation

1. Introduction

In recent years, physically based effects have become more
and more popular in computer games. Features that used to
be hand-animated are now driven by simulators. The most
important examples are rigid bodies and particles. However,
in most cases, large bodies of water such as rivers, lakes or
oceans are still animated using procedural approaches. The
reason for this is the large simulation domain in these sce-
narios. To get details on the surface of a lake using a full 3D
fluid simulation would require millions of grid cells in the
Eulerian case or millions of particles if an SPH approach is
used. For real-time applications such as computer games, a
viable simulation approach is to reduce the problem from 3D
to 2D by treating the body of water as a 2D height field. This
reduces simulation time substantially but comes at a price.
Phenomena like waterfalls or overturning waves cannot be
represented by a 2D height field. We solve this problem by
turning height field water into particles automatically based
on certain criteria that depend on the shape of the surface.

These particles are turned back into height field water when
they hit the water surface.

A simple and quite popular technique to simulate water sur-
faces is to solve the 2D wave equation. This approach works
well for local phenomena like puddles or waves around a
boat. The main drawback of this mathematical model, how-
ever, is that it only works with a vertical velocity field.
Therefore, effects that are based on horizontal motion such
as whirlpools or the flow of a river cannot be treated cor-
rectly. This is the reason we decided to use the shallow water
equations for our simulations. The presence of a horizontal
velocity field allows us to correctly advect floating objects
and foam particles on the surface.

In the following sections we will show how various tech-
niques can be put together to create a comprehensive sys-
tem for simulating large bodies of water with small scale
detail in real-time. This paper is not a system paper in the
traditional sense though because we did not simply combine

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

well known components but came up with various new ap-
proaches to solve the problems that arise when attempting to
simulate a realistic water scenario with all its large and small
scale features.

The main contributions of this paper are:

• Various improvements to a basic shallow water solver that
enhance stability and allow the handling of arbitrary ter-
rain slopes and arbitrary water depth.

• Criteria for automatically detecting surface discontinu-
ities such as waterfalls and a method to turn the liquid
volume in such locations into particles that carry mass and
momentum of the height field across the discontinuity.

• A technique to automatically create and advect small scale
FFT-based ripples on the water surface.

• A new and robust criterion to detect breaking waves and
a method to turn height field fluid into particles creating
spray, splash and foam.

• A way to absorb waves at the boundary of the simulation
domain for handling open water scenes.

1.1. Related Work

Procedural methods for generating water animations have
been used since the early days of computer graphics [FR86,
Pea86]. There are several papers that describe how to use the
spectral method for modeling ocean waves based on the Fast
Fourier Transformation (FFT) in order to create animations
of large bodies of water [MWM87,Tes99,TDG00,HNC02].
Although these methods are well suited to generate high res-
olution and large scale water animations, they cannot model
the interaction with solid objects easily and are unable to
generate vortices. With the exception of [Pea86] the sepa-
ration of liquid from the main body of water has not been
considered in these papers.

In computer graphics, [KM90] and [Tes99] were among the
first to simulate water surfaces by solving the wave equa-
tion with internal boundaries on a 2D height field. Many
researchers have used a pipe model where adjacent cells
are connected by pipes that allow water to flow across cell
boundaries. O’Brien and Hodgins [OH95] extended the pipe
model by adding splash particles and modeling rigid body
interaction with the water. Mould and Yang [MY97] later
added bubbles and modeled droplets. Holmberg and Wün-
sche [HW04] used a weir model to allow the simulation of
waterfalls. The method was later accelerated by a GPU im-
plementation in [MFC06]. The pipe model was also used to
simulate hydraulic erosion of terrains [vBBK08]. The au-
thors produced impressive results by accelerating the simu-
lation on GPUs. Recently, [YHK07] introduced a novel ap-
proach to approximate the solution of the wave equation by
storing wave trains on 2D particles. Multiple shifting grids
are used for simulating open water scenes by Cords and

Staadt [CS09]. The main drawback of methods based on the
wave equation or the pipe model is that vortices which are
responsible for many interesting water phenomena such as
swirling foam and whirlpools are not present in the model.

The Shallow Water Equations (SWE) can capture these phe-
nomena because in addition to the height field, they de-
scribe the evolution of a 2D velocity field normal to the wa-
ter columns. The SWE were introduced to computer graph-
ics in [LvdP02]. The approach is based on the idea of as-
suming linear vertical pressure profiles in the 3D Navier-
Stokes equations [CL95]. Hagen et al. [HHL∗05] used a
finite volume method for solving the SWE on the GPU to
simulate water flowing on irregular terrains. As height field
fluid approaches neither the wave equation nor the SWE
can handle breaking waves. [TMFSG07] proposed a method
to simulate breaking waves by automatically generating tri-
angle mesh patches and evolving them. Their method can-
not be parallelized easily though. [WMT07] added surface
tension forces to the SWE to simulate water flow on ar-
bitrary surfaces. Later, [ATBG08] used an implicit New-
mark integration scheme to reduce numerical dissipation in
the velocity advection step. To simplify the solver, [LO07]
ignored the divergence term and used a collocated grid.
Hess et al. [Hes07] integrated the SWE explicitly and de-
scribed methods for two way water - rigid body coupling
and wet-dry region tracking. The grid based portion of our
proposed method also employs the SWE with several novel
enhancements. Other approaches to model larger bodies of
water such as rivers include the use of stream functions in
[YNBH09] and the use of the 2D Navier-Strokes equations
coupled loosely with the pipe model in [BAB09]. They ad-
vect particles that store texture coordinates for adding small
scale detail to the water.

There are many works on the full 3D simulation of water
which are beyond the scope of this paper. We wholeheart-
edly refer the reader to the book by Bridson [Bri08] for
grid based simulation, and to a paper by Solenthaler and Pa-
jarola [SP09] and references therein for particles based sim-
ulation.

2. Methods

We will state all the steps explicitly in full algorithmic detail.
The goal is to provide enough information for the reproduc-
tion of our results. To get an overview of our method, the
reader can skip the formulas and concentrate on the descrip-
tions in the text.

Algorithm 1 Main loop (one time step)
1. Height field fluid simulation (Section 2.1)
2. Solids simulation (any standard simulator)
3. Two-way coupling of height field and solids(Section 2.3)
4. Particles generation and simulation (Section 2.4)
5. Rendering (Section 2.5)

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

Our main loop is summarized in Algorithm 1. We first simu-
late the height field fluid. Gravity, external forces and bound-
ary conditions are taken into account as discussed in Sec-
tion 2.1. Then, we simulate the solids such as rigid and soft
bodies using a standard simulation package. We then couple
the solids and the height field fluid as discussed in Section
2.3. Next, forces that the fluid exerts on the solids such as
buoyancy, drag and lift are computed and applied. We then
modify the fluid’s height field and velocity field to take the
movement of the solids into account. After that, we generate
particles to replace regions of the liquid that the height field
cannot resolve well. We then simulate the movement of the
particles and eliminate them if they fall back into the height
field (see Section 2.4). Finally, we render the height field
with an additional displacement map that represents small
waves with wave lengths below the resolution of the simu-
lation grid. The splash particles are rendered with a screen-
space technique as explained in Section 2.5

2.1. Height Field Fluid Simulation

We employ the Shallow Water Equations (SWE) which sim-
plify the full Navier-Stokes equations to a 2D height field
representation of the liquid surface. We assume gravity to
act along the y-axis. Hence the plane for the 2D simulation
is the x-z plane. In the following equations, h is the depth of
the water, H is the y-coordinate of the terrain on the bottom,
η=H+h is the y-coordinate of the water surface, v= (u,w)
is the horizontal velocity of the fluid, g is gravity and aext is
an external acceleration. The shallow water equations can be
written as

Dh
Dt

= −h∇·v, (1)

Dv
Dt

= −g∇η+aext, (2)

where D is the material derivative operator. The equations
describe conservation of mass and conservation of momen-
tum. A detailed derivation of the SWE can be found in
[Bri05]. Several authors [LvdP02], [WMT07], [ATBG08]
solved the SWE using implicit methods. This guarantees un-
conditional stability. However, they either require an itera-
tive method which incurs a significant run time cost or need
to pre-factorize the matrix which means boundary conditions
cannot be changed. We therefore use explicit integration and
handle the terms that can lead to instability specially.

We discretize the simulation domain with a staggered grid
where the heights hi, j and Hi, j are stored at the cell cen-
ters and the velocities components ui+ 1

2 , j
,wi, j+ 1

2
on faces

following [Bri05]. We employ a time-splitting technique by
first solving the self advection of the velocity field and then
integrating the height field and velocity field forward in time.
Throughout this paper we use meter (m) for distance and sec-
ond (s) for time as our units. The grid spacing and time steps
are denoted by ∆x and ∆t, respectively.

2.1.1. Velocity Advection

We solve the advection of ui+ 1
2 , j

,vi, j+ 1
2

using an un-
conditionally stable modified MacCormack method as in
[SFK∗08] and fall back to the semi-Lagrangian method if the
resulting value is not within the bounds of the velocity values
used for bilinear interpolation of the first semi-Lagrangian
sub-step as suggested in [SFK∗08].

2.1.2. Height Integration

Equation 1 can be re-written as

∂h
∂t

= −∇· (hv), (3)

and discretized it to get

∂hi, j

∂t
=−(

(h̄u)i+ 1
2 , j
−(h̄u)i− 1

2 , j

∆x
+
(h̄w)i, j+ 1

2
−(h̄w)i, j− 1

2

∆x
),(4)

where h̄ is h evaluated in the upwind direction

h̄i+ 1
2 , j

=

{
hi+1, j if ui+ 1

2 , j
≤ 0

hi, j if ui+ 1
2 , j

> 0,
(5)

and

h̄i, j+ 1
2
=

{
hi, j+1 if wi, j+ 1

2
≤ 0

hi, j if wi, j+ 1
2
> 0.

(6)

We integrate the height explicitly using

hi, j+=
∂hi, j

∂t
∆t. (7)

This guarantees mass conservation for the height integration
step. We also found that it yields a more stable simulation
than the choice of h̄i+ 1

2 , j
=

hi, j+hi+1, j
2 and h̄i, j+ 1

2
=

hi, j+hi, j+1
2

of [Hes07] in practice. The height integration step will be
modified to take the discontinuity due to waterfalls into ac-
count in Section 2.4.3.

2.1.3. Velocity Integration

The face velocities are updated by taking the gradient of the
water height into account as follows:

ui+ 1
2 , j

+= (
−g
∆x

(ηi+1, j−ηi, j)+aext
x)∆t, (8)

wi, j+ 1
2
+= (

−g
∆x

(ηi, j+1−ηi, j)+aext
z)∆t. (9)

This step will also be modified in Section 2.4.3.

2.1.4. Boundary Conditions

For a face that is marked by the user as reflective such as
walls or permanent static obstacles, the velocity value is al-
ways set to 0 at the end of every time step and is not updated
in the advection step. Moreover, we treat a face (i+ 1

2 , j) as
reflective if either of the following is true:

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

• hi, j ≤ ε and Hi, j > ηi+1, j or

• hi+1, j ≤ ε and Hi+1, j > ηi, j,

where ε > 0 is a small constant. We use 10−4
∆x in all exam-

ples. A similar condition applies to a face (i, j+ 1
2). Concep-

tually, the water level in a wet cell needs to be higher than
the terrain level in the neighboring dry cell before the flow
starts. Otherwise, the face behaves as a wall.

To simulate open water scenes, borders that absorb all in-
coming waves are needed. We adapt the Perfectly Matched
Layers (PMLs) method [SM09], [Joh08] with a few modifi-
cations to take the rest water level into account and to im-
prove stability. The idea is to define a damping region near
the border of the domain and make waves within that re-
gion decay fast enough such that their amplitudes are negli-
gible when they hit the border. To damp out the waves that
move along the x-axis we evolve a field φ, defined only in the
damping region. The field is initialized to 0 and then used to
update h and u as

hi, j += (−σi, j(hi, j−hrest)+φi, j)∆t, (10)

ui+ 1
2 , j

+= −1
2
(σi+1, j +σi, j)ui+ 1

2 , j
∆t, (11)

φi, j += −λupdateσi, j
(wi, j+ 1

2
−wi, j− 1

2
)

∆x
∆t, (12)

φi, j ×= λdecay, (13)

where the constant σi, j controls how fast the wave’s am-
plitudes decay, hrest is the depth of the water at rest and
0 < λdecay < 1 and 0 < λupdate < 1 are constants to help
improve the stability of the explicit Euler time integration.
As suggested in [Joh08], σi, j should increase quadratically
or cubically from the inner edge of the damping region to
the domain border. Large σi, j will result in a faster decay
and allow narrower damping regions but may introduce nu-
merical reflection when a wave is about to enter the re-
gion. We use λdecay = 0.9 and λupdate = 0.1 for all the exam-
ples. Waves moving in another directions are damped by the
above method with an attenuation factor proportional to the
cosine of the angle of the direction with the x-axis [Joh08].
To sufficiently damp the waves moving in all directions, a
similar formulation is used for the z-axis, see Appendix 3.1.
In all of our examples that require it, the width of the damp-
ing region is 10 cells. An example scene showing the PML
is shown in Figure 1. The top and the bottom borders are
absorbing z-moving waves while the left and the right bor-
ders are reflective. Notice how waves reflect only from the
left and right borders. The technique is used in the boat rid-
ing scene in Figure 8 and in the open ocean scene shown in
Figure 2.

2.1.5. Stability Enhancements

We propose several measures to improve the stability of the
simulation without losing much visual quality. Due to nu-
merical error, hi, j can become smaller than zero which is not

Figure 1: A domain with a reflecting boundary condition on
left and right, and absorbing region on the top and bottom.
The absorbing regions are highlighted in pink.

Figure 2: An open ocean scene using an absorbing layer
around the SWE domain which is surrounded by an FFT
based ocean simulation.

physical and can cause stability issues. Therefore, we clamp
hi, j to always be ≥ 0.

We also clamp the magnitudes of ui+ 1
2 , j

and vi, j+ 1
2

to be less

than α
∆x
∆t , where we use α = 0.5 in all examples. This places

a limit on the wave speed within the simulation, but greatly
improves the stability for scenes with violent water.

Additionally, we limit the water depth used for the height
integration by replacing h̄ in Equation 4 by h̄ − hadj,

where hadj = max(0, h̄i+1, j+h̄i−1, j+h̄i, j+1+h̄i, j−1
4 − havgmax) and

havgmax = β
∆x
g∆t . We use β = 2.0 in all examples. This places

a limit on the wave lengths and amplitudes in deep water re-
gions, but improves the stability of the simulation while still
produce plausible results.

2.2. Overshooting Reduction

When a wave from deeper waters enters a shallower region,
its amplitude increases and the wavelength decreases. Even-
tually, the wave lengths become smaller than ∆x and cannot
be resolved by the grid anymore but become numerical rip-
ples instead. The use of explicit integration makes the situ-
ation worse as it tends to amplify the edge of the first wave

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

Figure 3: a) Overshooting artifacts on top of breaking
waves. b) Artifacts reduced by our technique.

+
-

+
-

Figure 4: a) Division of triangles into similar triangles b)
Estimating the submerged volume by adding/subtracting the
prism between downward/upward facing triangles and the
water surface.

front that enters the shallower water region. This manifests
itself as overshooting artifacts in the simulation result, as
shown in Figure 3a. To reduce the problem, we detect edges
of these waves and reduce their magnitude by checking

• if ηi, j−ηi−1, j > λedge and ηi, j > ηi+1, j, then
hi, j+= αedge(max(0, 1

2 (hi, j +hi+1, j))−hi, j).

• if ηi, j−ηi+1, j > λedge and ηi, j > ηi−1, j, then
hi, j+= αedge(max(0, 1

2 (hi, j +hi−1, j))−hi, j).

We use λedge = 2∆x and 0.1 < αedge < 0.5 in our examples.
A similar fix is used to waves moving along the z-axis. This
reduces the overshooting for waves traveling in other direc-
tions as well, albeit less effective. Notice how the overshoot-
ing artifact is reduced in Figure 3b.

2.3. Two-Way Coupling of the Height Field with Solids

In this section we describe how we handle the coupling of
rigid and soft bodies with the height field fluid. For all the tri-
angles of the rigid bodies and the soft bodies we recursively
divide each triangle into smaller similar sub-triangles until
the area of these sub-triangles falls below κ∆x2 (see Figure
4a). With decreasing κ the force computation becomes more
accurate but also more expensive. We use κ = 1 in all our
examples.

Let p = [px, py, pz]
T and v = [vx,vy,vz]

T be the position and
velocity of the centroid of a sub triangle with area A. p and

v are obtained by barycentric interpolation from the corre-
sponding original triangle. Let n = [nx,ny,nz]

T be the nor-
mal vector of the triangle. Throughout the section, ŷ denotes
the unit vector [0,1,0]T .

2.3.1. Fluid to Solids

We model the forces that the fluid exerts on a solid by tak-
ing three major components into account namely buoyancy,
drag and lift forces. Buoyancy is an upward pointing force
proportional to the weight of the displaced fluid. It can be
computed as −gρV , where V is the volume of the object be-
low the water surface. V is estimated simply by adding and
subtracting the volumes of the prisms formed by projecting
the triangle along the y-axis to the water surface. Volume is
added for the downward facing triangles and subtracted for
the upward facing triangles, as shown in Figure 4b.

The contribution of a sub triangle to the buoyancy force is
hence

fbouyancy =

{
0 if η(p)< py

gρA(η(p)− py)nyŷ otherwise,
(14)

where η(p) is the water level at p, evaluated by a bi-linear
interpolation.

The drag and lift forces are computed as in [YHK07],

fdrag = −1
2

CDAeff|vrel|vrel, (15)

flift = −1
2

CLAeff|vrel|(vrel×
n×vrel

|n×vrel|
), (16)

where CD and CL are the drag and lift coefficients, vrel = v−
vfluid is the relative velocity of the sub-triangle with respect to
the fluid. vfluid = [u,u ∂η

x +w ∂η

z ,w]T . Aeff is the effective area
of the sub triangle, which depends on the overall structure of
the solid. It is computed as

Aeff =

{
0 if η(p)< py or n · vrel < 0
(

n·vrel
|vrel|

ω+(1−ω))A otherwise,
(17)

where 0 ≤ ω ≤ 1 is a user defined parameter for adjusting
the effective area.

We then add the force fbouyancy+ fdrag+ flift at position p to the
corresponding solid the sub-triangle belongs to. In the case
the solid is a soft body, we distribute the force to the three
vertices of the original triangle weighted by the barycentric
coordinates.

2.3.2. Solids to Fluid

We modify the height and the velocity of the fluid due to
solids using Algorithm 2.

During a time step, a fast moving object may pass through
many grid cells. In that case the changes to the grid cells and
faces are applied to all the cells along the path (lines 4 to 15).
We also reduce the effect of solids on the fluid exponentially

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

Algorithm 2 Solids to Fluid

1: num_substeps = max(1,b|v− vyŷ| ∆t
∆x +0.5c)

2: Vdisp = n ·vrelA∆t
3: sign = (ny > 0)?1 :−1
4: for q = 1 to num_substeps do
5: ps = p+v q∆t

num_substeps
6: (i, j) = closest_gridpoint(p)
7: depth = ηi, j− py
8: if depth > 0 then
9: decay = eλ(−depth)

10: hi, j+= decay
Vdisp

num_substeps(∆x)2 Cdis

11: coeff = min(1.0,decayCadapt
depth

ηi, j
sign ∆t

(∆x)2 A)
12: ui+ 1

2 , j
+= coeff (vx−ui+ 1

2 , j
)

13: vi, j+ 1
2
+= coeff (vz− vi, j+ 1

2
)

14: end if
15: end for

with increasing distance to the surface (line 9). The decay
rate λ > 0 is set to 1 in all our examples. Cdis > 0 and Cadapt >
0 controls how much the solid effects the fluid height and
velocity respectively. We use Cdis = 1.0 and Cadapt = 0.2 in
all examples. The height change depends on the amount of
volume that the triangle sweeps through the fluid during that
sub time-step,

Vdisp
num_substeps , divided by the area of the cell,

(∆x)2, see line 10.

2.4. Particle Generation and Simulation

We employ three types of particle in our simulator: spray,
splash and foam. Spray and splash particles represent parts
of liquid that break free from the height field. Spray particles
are small, fast moving droplets while splash particles repre-
sent the remainder. Foam particles represent foam that floats
on the surface of the water. Spray, splash and foam particles
are generated within our simulation framework from break-
ing waves, waterfalls and interaction of solids with the fluid.
In addition, they can be generated explicitly by user defined
sources such as faucets, pouring waters or rain drops. We do
not model bubbles raising from below the water in this work.
Such effects could be added if desired with the method pre-
sented in [TSS∗07].

2.4.1. Spray, Splash and Foam Simulation

We model spray and splash using particle systems without
particle-particle interaction. The spray and splash particles
need to be generated separately and simulated using dif-
ferent drag coefficients. When a particle is generated from
a grid cell, it takes away some mass and momentum from
the height field. When it falls back, it deposits its mass and
momentum back at another location. If a particle is of ra-
dius r, the height that will be added/subtract is Veff

(∆x)2 , where

Veff = Cdeposit
4
3 πr3 is the amplified volume of the particles.

Cdeposit ≥ 1 makes the volume of the particles more than
it physically is. Cdeposit can be used to control the number
of particles active in the simulation. We use the values of
Cdeposit between 1 and 10 in our examples. Let ui+ 1

2 , j
be the

nearest velocity along x-axis sample that a particle falls into,
vpar = [vpar

x ,vpar
y ,vpar

z]T be its velocity. We can update ui+ 1
2 , j

by using

ui+ 1
2 , j

=
ui+ 1

2 , j
hi, j(∆x)2 + vpar

x Veff

hi, j(∆x)2 +Veff
. (18)

A similar equation is used for wi, j+ 1
2
. When a splash particle

hits the surface we create a foam particle with some proba-
bility, depending on the impact speed of the droplet.

We jitter the initial positions of particles by moving them by
a random fraction of a time step. This makes them look as
if they were generated somewhere in the middle of the time
interval. We also add some noise to the initial velocities of
the particles.

Foam is advected by the velocity field of the fluid simula-
tion and projected onto the fluid surface. Its lifetime is a
user-defined parameter modulated with some noise. It nicely
conveys the horizontal swirling water motion in Figure 8.

2.4.2. Breaking Waves

Breaking waves cannot be resolved by a height field model.
In a 2D framework, waves that would break in three dimen-
sions produce disturbing ripples due to numerical instabili-
ties. To solve this problem, we damp such waves and create
particles to make sure we do not lose the effect as shown in
Figure 5a. A cell (i, j) is considered to contain a breaking
wave if it satisfies all of these conditions:

1. |∇ηi, j|> αminSplash
g∆t
∆x // Steep enough to break

2.
hi, j−hprev

i, j
∆t > vminSplash // Raising fast and is front of a wave

3. ∇2
ηi, j < lminSplash, // Is top of a wave

where hprev
i, j is the height in the previous time step. Condition

1 makes sure that the wave is steep enough. It is similar to
a condition presented by Thuerey et al. [TMFSG07]. Condi-
tion 2 requires that the cell is part of the front of a fast raising
wave. In our examples, we found it to be more robust than
the condition ∇ηi, j · [ui, j,vi, j]

T < 0 of [TMFSG07]. Condi-
tion 3 ensures that we generate particles only near the top
of a wave if its wave length is many grid cells wide. We use
vminSplash = 4, αminSplash = 0.45, lminSplash = −4 in our exam-
ples. We compute∇ηi, j using the maximum among the one-
sided derivatives, to allow detection of a fast height change,
as

∇ηi, j =

[
maxabs(ηi+1, j−ηi, j ,ηi, j−ηi−1, j)

∆x
maxabs(ηi, j+1−ηi, j ,ηi, j−ηi, j−1)

∆x

]
, (19)

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

Figure 5: a) Breaking wave particles. b) Particles are placed
within the red dotted rectangle.

where maxabs(s, t) = (|s|> |t|)?s : t. We compute∇2
ηi, j us-

ing a central finite differencing as

∇2
ηi, j =

ηi+1, j +ηi−1, j +ηi, j+1 +ηi, j−1−4ηi, j

(∆x)2 . (20)

We then generate particles within a rectangle whose edges
are the y-axis and the line perpendicular to the direction of
the gradient passing through the cell center clipped against
cell edges, as shown in Figure 5b. The total volume of the
added particles is proportional to |∇ηi, j|. We jitter these
particle positions by uniform noise sampled form [−∆x

2 , ∆x
2].

The x and z components of the particle velocities are given
by the wave velocity [TMFSG07] and are clamped to the

maximum water depth,
−∇ηi, j

√
g min(hi, j ,havgmax)
|∇ηi, j| . The y com-

ponents is λy
hi, j−hprev

i, j
∆t , where we use λy = 0.1 in all exam-

ples. We also label a fraction of these particles as spray.

2.4.3. Waterfalls

We treat a face (i+ 1
2 , j) as a waterfall face if

• case 1: Hi, j−Hi+1, j
∆x > ∆Hcap and Hi, j > ηi+1, j or

• case 2: Hi+1, j−Hi, j
∆x > ∆Hcap and Hi+1, j > ηi, j.

In each case, the left condition states that the terrain slope is
larger than ∆Hcap, where we use 3

2 in all examples. This indi-
cates an approximate discontinuity in the terrain height. The
right condition makes sure that the lower end of the water-
fall is not already filled to the same level as the higher end.
An example with multiple layers of waterfalls is shown in
Figure 6a.

We generate splash particles by sampling uniformly over
an axis aligned bounding box defined by pwf

min and pwf
max as

shown in Figure 6b. Their velocities are set to vwf. This
bounding box represents the volume of the fluid that would
flow across the face (i+ 1

2 , j) during the current time step.
These variables are computed using the following algorithm:

Figure 6: a) A scene with multiple layers of waterfalls. b)
The waterfall particles are seeded within the dotted red box.

if ηi+1, j < Hi, j then

vwf = [ui+ 1
2 , j

,0,
wi, j+ 1

2
+wi, j− 1

2
2]T

pwf
min = [i∆x,Hi, j, j∆x]T

pwf
max = [i∆x+ui+ 1

2 , j
∆t,ηi, j,(j+1)∆x]T

else
vwf = [ui+ 1

2 , j
,0,

wi+1, j+ 1
2
+wi+1, j− 1

2
2]T

pwf
min = [(i+1)∆x+ui+ 1

2 , j
∆t,Hi+1, j, j∆x]T

pwf
max = [(i+1)∆x,ηi+1, j,(j+1)∆x]T

end if

We do not subtract the volume of the splash particles from
the height field because the modified height integration step
explained next already take this into account. The height and
velocity integration is modified as follows:

• case 1: Replace ui+ 1
2 , j

with 0 when updating hi+1, j.

——–..Replace Eq. 8 with ui+ 1
2 , j
−=g∆t(− hi, j

∆x −∆Hcap).

• case 2: Replace ui+ 1
2 , j

with 0 when updating hi, j.

——–..Replace Eq. 8 with ui+ 1
2 , j
−=g∆t(hi+1, j

∆x +∆Hcap).

These modifications have the effect that the cell at the bot-
tom of the waterfall treats the waterfall face as a reflecting
boundary and that the waterfall face’s velocity is updated
specially. The volume that would flows across this bound-
ary is carried by the particles instead. Our waterfall particle
generation algorithm not only enhances the visual richness
of the scene, but also makes the simulation more stable be-
cause steep terrain slopes cause numerical instabilities. The
advection of quantities along the velocity field would have
to be modified as well to make sure that they are not traced
up the waterfall. However, we found that this can safely be
ignored in practice without introducing visual artifacts. Wa-
terfall faces (i, j+ 1

2) are treated in a similar manner.

2.4.4. Splashes from Interaction with Bodies

We also generate splashes and spray when rigid and soft
bodies interact with the fluid. For this we go through each
surface triangle of the solid and check if it sweeps through

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

the height field during the current time step and its speed is
above a threshold, vthres. If so, we sample the triangle uni-
formly by recursive subdivision as in Section 2.3. We stop
when the area is roughly the same as the size of splash par-
ticles. For each sample, we check whether it sweeps through
the height field. If so, we generate splash particles. Let ps,
vs, ns be the sample’s position, velocity and normal found
by barycentric interpolation from the original triangle and
let vs

fluid be the fluid velocity at ps. The velocity of the par-
ticles generated, vpar, is computed using the following algo-
rithm:

vrel = vs−vs
fluid, —

vrn = (vrel ·ns)ns, —
vrp = vrel−vrn,
vpar = vs

fluid +αrnvrn +αpvrp +αnns|vrel · ŷ|+αr(vrel− 2(ŷ · vrel)ŷ).

The α’s parameters control the look of the splashes. In our
examples, we use αrn = 0.86, 0.10≤αp≤ 0.23, 0.00≤αn≤
0.01, and 0.17 ≤ αr ≤ 0.61. We then generate particles at
ps + 2rqns, where 0 ≤ q < num_par, with initial velocity
vpar. We make num_par proportional to |vs|− vthres. The po-
sition of these particles are jittered randomly within the ra-
dius r.

2.5. Rendering

After a time step, we have a newly updated state of the height
field fluid and the particles. In this section we describe how
to render them. Our goal is to convey the complex fluid flow
features and to enhance the surface details of the fluid.

2.5.1. Wave Crest Alignment and Choppy Waves

The height field fluid can be thought of as a rectangular
grid of quads over the x-z plane. ηi, j determines the y-
coordinate of the vertex (i, j) of the grid. Each quad can
be split into two triangles in two ways. Silhouette arti-
facts are reduced by picking the diagonal that better aligns
with wave crests. We pick diagonal (i, j)− (i + 1, j + 1)
if ηi, j +ηi+1, j+1 > ηi+1, j +ηi, j+1, otherwise, we pick di-
agonal (i+ 1, j)− (i, j + 1). This test can be implemented
efficiently on the GPU using a geometric shader. We em-
ploy this technique in the beach scene (Figure 3) and the
open ocean scene (Figure 2). To improve the appearance of
the water surface further, we make the waves look choppy
as in [LO07], by replacing vertex coordinates (x,z) with
(x+ c ∂η

∂x ,z+ c ∂η

∂z), where c > 0 control the choppiness. We
also clamp the displacement in each direction to not exceed
∆x
2 in order to avoid self intersections.

2.5.2. FFT Waves Advection

The height field simulation described so far cannot resolve
waves with wave lengths smaller than the grid resolution ∆x.
With the constraint of being real-time, decreasing ∆x further
is not an option because this would increase the number of

cells and require a smaller time step ∆t for a stable simu-
lation. Instead, we want to add smaller waves on top of the
height field with the following properties:

1. They should be advected with the velocity field.

2. They must not be distorted excessively over time.

3. They disappear if being stretched too much.

4. The method must be relatively cheap.

The key idea is to use an FFT based wave simulation
[MWM87,Tes99] with periodic boundary conditions to gen-
erate a high resolution wave texture F(s, t) and lookup
this texture for the additional sub-grid displacements of the
height field. The FFT wave texture only contains high fre-
quency waves. The texture coordinates and the weights used
for modulating the additional displacement are computed on
the simulation grid points. They are then bi-linearly inter-
polated for per-pixel bump mapping or for displacing the
rendering grid. We use the texture for bump mapping in all
examples. We also use it for displacing a high resolution ren-
dering grid with a grid spacing of 1

4 ∆x in the boat riding ex-
ample. Figure 7 shows the comparisons between rendering
without FFT waves, with constant weight FFT waves and
with varying weight FFT waves. Notice how the constant
weight case contains unnaturally distorted small waves.

We employ the method present by Max and Becker [MB96]
for the texture coordinates re-generation and texture blend-
ing. For each grid cell (i, j) we additionally store 3 sets
of texture coordinates (sk

i, j, t
k
i, j),k = 1..3 which are initial-

ized with (i∆x, j∆x). They are transported with the velocity
field using semi-Lagrangian advection. We reset (sk

i, j, t
k
i, j)

to (i∆x, j∆x) every τ seconds with a phase shift of τ/3 be-
tween k and (k+ 1) mod 3. The weight used for multiply-
ing the displacement ωi, j should depend on how much the
velocity field would stretch the wave. We use ωi, j = e−Ωµi, j ,
where µi, j = max3

k=1 µk
i, j . µk

i, j is the absolute value of the
eigenvalue with maximum magnitude of the Green strain
of (sk, tk) at (i, j). The Green strain can be computed as
1
2 (DDT − I), where D =

[
∂sk
∂x

∂sk
∂z

∂tk
∂x

∂tk
∂z

]
. Ω > 0 controls how

fast the small waves disappear with stretching, for which
we use values between 0.5 to 2 in our examples. The fi-
nal displacement for a given position is ω∑

3
k=1 wkF(sk, tk),

where ω,sk, tk are bi-linearly interpolated from the grid,

wk =
1
3 (1−cos(2π

t−tk
0

τ
)), tk

0 is the last time the set k is regen-
erated. The phase shift ensures a constant blending weight.
The choice of τ trades off the distortion of the texture co-
ordinates against the coherency of the waves. We use τ ≤ 3
seconds in our examples. One could also adapt a texture co-
ordinate regeneration method presented by Neyret [Ney03]
to not have to make this tradeoff, but it is more expensive.

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

Figure 7: Left: No FFT Mid: FFT constant weight (Ω = 0) Right: FFT varying weight (Ω = 1)

2.5.3. Particles Rendering

We render the splash particles using the screen space tech-
nique presented by Van der Laan et al. [VdLGS09] with the
modification of using a bi-lateral filter with support radius
defined in world space [RD10], so that the fluid appearance
is view-independent. For the final rendering of the particle
surface, we use the same pixel shader as the one for render-
ing the height field.

Spray particles are rendered as an elongated ellipse along
the direction of their velocity to emulate the motion blur ef-
fect as in [VdLGS09]. Foam particles are rendered as diffuse
disks with normals perpendicular to the height field water
surface.

3. Results and Discussion

We implement our method both on the CPU as well as on the
GPU using CUDA. All timings are done on an Intel Core i7,
2.67 GHz with 4GB of memory and NVIDIA GTX480. We
use NVIDIA’s PhysX SDK for rigid body, soft body, and
cloth simulation. The size of the grid and the number of par-
ticles used for each example are stated in Table 1. We use
∆t = 16.66ms in all examples, except the boat riding exam-
ple, where we use ∆t = 20ms. Table 2 show the timings for
various examples. For scenes indicated with the letter G, all
the steps are executed on the GPU except for the solid cou-
pling. Porting the solid coupling part to the GPU is part of
future work. For the CPU cases, the height field simulation
and the particles simulation are multi threaded.

A drawback of our method is that although the height inte-
gration step conserves volume, the coupling and the over-
shooting reduction do not. However, we found that volume
loss is less crucial in these situations and a global mass ad-
justment technique such as the one proposed by [Hes07]
could be employed if desired. Another drawback is that our
stability enhancements cannot guarantee unconditional sta-
bility. However, they allow us to explicitly integrate with a
reasonable time step in all of our examples.

When a dense object falls into the water and fully submerges,
there is usually a secondary splash called Rayleigh jet due to
the collapse of water over the cavity formed by the object.

We are currently experimenting with a method to simulate
this phenomena. Another area of future work is in rendering
of the water represented by the height field and the particles
seamlessly and efficiently.

Boat WaterF PML Beach Ocean
Grid 900x135-128x128 -128x128 -128x128-256x256
Par 250K 56K 2K 220K 83K

Table 1: Grid size and average number of foam, spray, and
splash particles active in a given frame.

Total HF Gen Par Cou
BoatC1 94.50 42.25 5.11 16.18 2.46
BoatC2 76.75 25.69 5.11 9.91 2.31
BoatC3 73.88 23.25 5.11 8.18 2.24
BoatC4 69.75 19.06 5.09 7.55 2.31
BoatG 18.05 2.19 1.36 1.15 2.32
WaterFG 7.97 0.75 0.82 0.44 0.00
PMLG 3.78 0.78 0.13 0.19 0.00
BeachG 9.88 0.75 1.87 0.90 0.00
OceanG 13.13 1.28 1.16 0.56 3.13

Table 2: Timing for various examples in milliseconds. To-
tal is the frame time including rendering. HF includes ad-
vection, height integration, velocity integration, PML, over-
shooting reduction and FFT texture coordinate advection.
Gen includes all particle generation steps. Par includes par-
ticles simulation. Cou is the coupling of solids with fluid. The
lines BoatC1...C4 contain the timings of the boat demo run-
ning on the CPU with 1-4 threads. The other lines show tim-
ings on the GPU. PML shows the all absorbing boundaries
case. Beach shows the timings for the case with overshooting
reduction.

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

References

[ATBG08] ANGST R., THÜREY N., BOTSCH M., GROSS M.:
Robust and Efficient Wave Simulations on Deforming Meshes.
Computer Graphics Forum 27 (7) (October 2008), 6, 1895 –
1900. 2, 3

[BAB09] BURRELL T., ARNOLD D., BROOKS S.: Advected
river textures. Comput. Animat. Virtual Worlds 20, 2–3 (2009),
163–173. 2

[Bri05] BRIDSON R.: Shallow water discretization, Lecture notes
Animation Physics. University of British Columbia, 2005. 3

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A K Peters, 2008. 2

[CL95] CHEN J. X., LOBO N. D. V.: Toward interactive-rate
simulation of fluids with moving obstacles using navier-stokes
equations. Graph. Models Image Process. 57, 2 (1995), 107–116.
2

[CS09] CORDS H., STAADT O.: Real-time open water environ-
ments with interacting objects. In Proceedings of Eurographics
Workshop on Natural Phenomena (EGWNP) (2009). 2

[FR86] FOURNIER A., REEVES W. T.: A simple model of ocean
waves. SIGGRAPH Comput. Graph. 20, 4 (1986), 75–84. 2

[Hes07] HESS P.: Extended Boundary Conditions for Shallow
Water Simulations. Master’s thesis, ETH Zurich, 2007. 2, 3,
9

[HHL∗05] HAGEN T. R., HJELMERVIK J. M., LIE K.-A.,
NATVIG J. R., HENRIKSEN M. O.: Visual simulation of
shallow-water waves. Simulation Modelling Practice and The-
ory 13, 8 (2005), 716–726. 2

[HNC02] HINSINGER D., NEYRET F., CANI M.-P.: Interactive
animation of ocean waves. In Proc. SCA (2002), pp. 161–166. 2

[HW04] HOLMBERG N., WÜNSCHE B. C.: Efficient modeling
and rendering of turbulent water over natural terrain. In Proc.
GRAPHITE (2004), pp. 15–22. 2

[Joh08] JOHNSON S. G.: Notes on perfectly matched layers. on-
line mit course notes, July 2008. 4

[KM90] KASS M., MILLER G.: Rapid, stable fluid dynamics for
computer graphics. In Proc. SIGGRAPH (1990), pp. 49–57. 2

[LO07] LEE R., O’SULLIVAN C.: A fast and compact solver
for the shallow water equations. Virtual Reality Interations and
Physical Simulation 1 (2007), 51–58. 2, 8

[LvdP02] LAYTON A. T., VAN DE PANNE M.: A numerically
efficient and stable algorithm for animating water waves. The
Visual Computer 18, 1 (2002), 41–53. 2, 3

[MB96] MAX N., BECKER B.: Flow visualization using moving
textures. In Proc. LCAS/LaRC Symposium on Visualizing Time-
Varying Data (1996), pp. 77–87. 8

[MFC06] MAES M. M., FUJIMOTO T., CHIBA N.: Efficient an-
imation of water flow on irregular terrains. In Proc. GRAPHITE
(2006), pp. 107–115. 2

[MWM87] MASTIN G. A., WATTERBERG P. A., MAREDA J. F.:
Fourier synthesis of ocean scenes. IEEE Comput. Graph. Appl.
7, 3 (1987), 16–23. 2, 8

[MY97] MOULD D., YANG Y.-H.: Modeling water for computer
graphics. Computers & Graphics 21, 6 (1997), 801–814. 2

[Ney03] NEYRET F.: Advected textures. In Pro. SCA (2003),
pp. 147–153. 8

[OH95] O’BRIEN J. F., HODGINS J. K.: Dynamic simulation of
splashing fluids. In Proc. Computer Animation (1995), p. 198. 2

[Pea86] PEACHEY D. R.: Modeling waves and surf. SIGGRAPH
Comput. Graph. 20, 4 (1986), 65–74. 2

[RD10] ROUSLAN DIMITROV M. S.: SPH fluid rendering, in
submission to siggraph talk, 2010. 9

[SFK∗08] SELLE A., FEDKIW R., KIM B., LIU Y., ROSSIGNAC
J.: An unconditionally stable MacCormack method. J. Sci. Com-
put. 35, 2-3 (2008), 350–371. 3

[SM09] SÖDERSTRÖM A., MUSETH K.: Non-reflective bound-
ary conditions for incompressible free surface fluids. SIGGRAPH
Talks (2009). 4

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible sph. In Proc. SIGGRAPH (2009), pp. 1–6. 2

[TDG00] THON S., DISCHLER J.-M., GHAZANFARPOUR D.:
Ocean waves synthesis using a spectrum-based turbulence func-
tion. In Proc. CGI (2000), p. 65. 2

[Tes99] TESSENDORF J.: Simulating ocean water. SIGGRAPH
course notes, 1999. 2, 8

[TMFSG07] THUREY N., MULLER-FISCHER M., SCHIRM S.,
GROSS M.: Real-time breakingwaves for shallow water simula-
tions. In Proc. Pacific Conf. on CG and App. (2007), pp. 39–46.
2, 6, 7

[TSS∗07] THÜREY N., SADLO F., SCHIRM S., MÜLLER-
FISCHER M., GROSS M.: Real-time simulations of bubbles and
foam within a shallow water framework. In Proc. SCA (2007),
pp. 191–198. 6

[vBBK08] ŠT́AVA O., BENEŠ B., BRISBIN M., KŘIVÁNEK J.:
Interactive terrain modeling using hydraulic erosion. In Proc.
SCA (2008), pp. 201–210. 2

[VdLGS09] VAN DER LAAN W. J., GREEN S., SAINZ M.:
Screen space fluid rendering with curvature flow. In Proc. I3D
(2009), pp. 91–98. 9

[WMT07] WANG H., MILLER G., TURK G.: Solving gen-
eral shallow wave equations on surfaces. In Proc. SCA (2007),
pp. 229–238. 2, 3

[YHK07] YUKSEL C., HOUSE D. H., KEYSER J.: Wave parti-
cles. In Proc. SIGGRAPH (2007), p. 99. 2, 5

[YNBH09] YU Q., NEYRET F., BRUNETON E., HOLZSCHUCH
N.: Scalable real-time animation of rivers. Proc. Eurographics
28, 2 (2009). 2

Appendix

3.1. PMLs for z-moving waves

hi, j += (−γi, j(hi, j−hrest)+ψi, j)4t (21)

wi, j+ 1
2

+= −1
2
(γi, j+1 + γi, j)wi, j+ 1

2
4t (22)

ψi, j += −λupdateψi, j
(ui+ 1

2 , j
−ui− 1

2 , j
)

4x
4t (23)

ψi, j ×= λdecay (24)

We evolve the field ψ only in the regions where we want
to damp a z-moving waves. γ plays the same role as σ in
Section 2.1.4.

c© The Eurographics Association 2010.

Nuttapong Chentanez & Matthias Müller / Real-time Simulation of Large Bodies of Waterwith Small Scale Details

Figure 8: A boat driving on an infinitely long river that flows over an irregular terrain. This scene demonstrates all techniques
presented in the paper: Small waterfalls, swirling vortices, foam, spray, splashes, small scale waves, interaction of water with
rigid and soft bodies. The simulation grid is shifted in whole multiple of grid spacing ∆x to be approximately centered around
the boat at all time.

c© The Eurographics Association 2010.

