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Abstract

We present a GPU friendly, Eulerian, free surface fluid simulation method that conserves mass locally and globally
without the use of Lagrangian components. Local mass conservation prevents small scale details of the free surface
from disappearing, a problem that plagues many previous approaches, while global mass conservation ensures
that the total volume of the liquid does not decrease over time. Our method handles moving solid boundaries as
well as cells that are partially filled with solids. Due to its stability, it allows the use of large time steps which makes
it suitable for both off-line and real-time applications. We achieve this by using density based surface tracking with
a novel, unconditionally stable, conservative advection scheme and a novel interface sharpening method. While
our approach conserves mass, volume loss is still possible but only temporarily. With constant mass, local volume
loss causes a local increase of the density used for surface tracking which we detect and correct over time. We also
propose a density post-processing method to reveal sub-grid details of the liquid surface. We show the effectiveness
of the proposed method in several practical examples all running either at interactive rates or in real-time.

1. Introduction

Tracking the free surface of a liquid is an important and
challenging problem. For an overview of existing methods
we recommend the class notes of Wojtan et al. [WMFB11].
The most popular approach is to advect a scalar field with
the fluid and define the liquid surface to be one of the iso-
surfaces. The main advantage of this class of methods is
that they handle topological changes implicitly in contrast
to mesh-based tracking methods. Until recently, the level
set method was the method of choice in graphics. Here, the
signed distance field is used as the scalar field with the zero-
iso-surface as the liquid surface.

A well known drawback of the level set method is that vol-
ume is lost both globally and locally. With global volume
loss the water level decreases over time while local volume
loss causes small detail such as thin sheets and droplets to
disappear. A way to alleviate this problem is to introduce
Lagrangian components such as particles [FF01], [EMF02]
or triangle meshes [BGOS05]. Even though these methods
reduce volume loss, they cannot guarantee complete volume
conservation. Moreover, Lagrangian components add signif-
icant run-time cost and complicate the implementation sig-
nificantly, especially for GPUs.

As an alternative to the signed distance field, [MMTD07] in-

troduced the idea of using a density field as the scalar field
for surface tracking with the liquid surface being the 0.5 iso-
surface. This density field is not to be mistaken for the den-
sity field of the liquid. In incompressible fluid simulations,
the fluid-density is 1 everywhere and therefore not stored. So
in what follows, we use the symbol ρ for the surface density.

We chose to use surface density instead of the signed dis-
tance field because there are advection methods that strictly
conserve quantities like density such as the one proposed
by [LAF11]. Their advection method is unconditionally sta-
ble and fully conservative.

With this approach, the overall mass defined by the surface
density is conserved. Since the surface density can devi-
ate from 1 temporarily, the overall volume may vary over
time though. However, in contrast to the level set method
where such variations go unnoticed, volume deviations are
reflected in the density field. In this paper we propose sev-
eral methods to preserve volume both globally and locally
using the information stored in the density field.

Ideally, the surface density has the form of a step function
at the liquid-air interface. Over time, however, the initially
sharp boundary blurs out due to numerical diffusion. There-
fore, [MMTD07] apply a sharpening filter at each time step
which conserves mass globally but not locally. We propose a
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Figure 1: A liquid jet with large flow rate inside a rectangular tank simulated at a resolution of 256x128x128 cells. The simula-
tion time step is 1/30 seconds (CFL 25) which is much larger than what is typically used in other grid based liquid simulation
approach. The liquid moves across many grid cells in a single time step, a situation our method handles without difficulty. Left)
Surface rendering. Right) Volumetric rendering showing intricate detail of the density field.

new sharpening method which conserves mass both locally
and globally.

Our main contributions are:

• A GPU friendly, purely Eulerian liquid simulator that con-
serves mass locally and globally without any need for La-
grangian components.

• A new GPU friendly sharpening method which conserves
mass locally and globally.

• Modifications to reduce the computational cost of the con-
servative advection method of [LAF11] and to make it
more GPU friendly.

• Additional novel steps to handle non-axis aligned and
moving solid boundaries.

• A density post processing technique to bring out sub-grid
detail.

2. Related Work

3D Eulerian liquid simulation was introduced to computer
graphics by Foster and Metaxas [FM96] who used a finite
difference approach to solve the governing equations. Later
Foster and Fedkiw [FF01] employed the semi-Lagrangian
method introduced by Stam [Sta99] to solve the advection
term and the level set method and particles to track liquid
surface. Enright et al. [EMF02] devised the Particle Level
Set (PLS) method which uses particles on both sides of
liquid-air interface to reduce volume loss. Since then, many
methods have been proposed to further improve the accuracy
of Eulerian surface tracking.

Various approaches have been proposed to track the liquid
domain more faithfully. [BGOS05] used a triangle mesh rep-
resentation in connection with a level set grid, [HK10] aug-
mented the level set grid with quadrature points. Grid-less
methods work with Lagrangian elements only such as parti-
cles [ZB05], [APKG07] or [YT10], triangles meshes [M0̈9],
[BB09] and [WTGT10].

In this paper we focus on fluid mass and volume conserva-
tion. A popular way to compensate volume gain or loss is
to modify the divergence of the velocity field as proposed
in [FOA03]. This technique was extended and used for con-
serving volume of bubbles [KLL∗07], highly deformable ob-
jects [ISF07] and liquids [MMTD07].

The problem of loss of liquid mass and momentum has
also been addressed by proposing elaborate advection meth-
ods such as BFECC [KLLR05], modified MacCormack
[SFK∗08], derivatives advection [KSK08] and conservative
semi-Lagrangian advection [LGF11], [LAF11].

As an alternative to level-set, the fluid domain can be tracked
with a Volume-of-Fluid (VOF) approach [HN81] where
the volume fraction of fluid in each cell is evolved over
time. With proper care, VOF can be made mass conserv-
ing. However, despite several improvements in subsequent
works such [PP04], [AGDJ08], reconstructing surface nor-
mal and curvature from VOF is still difficult. Sussman and
Puckett [SP00] proposes coupled Level Set and Volume-of-
Fluid (CLVOF) which track the fluid interface with both
representations, where VOF is used for re-initializing the
Level Set. The surface can then be extracted from the Level
Set. CLVOF is extended to handle multiple interfaces in
[KPyNS10]. The downside of CLVOF is the need to use two
representations which can be quite computationally inten-
sive. An alternative to VOF is to track a smeared-out sur-
face density and keep it relatively sharp with a sharpening
operation. This method was introduced to computer graph-
ics by Mullen et al. [MMTD07]. Our fluid domain tracking
approach builds upon this work and make it conserve mass
both locally and globally.

Apart from the Eulerian formulation we use, there are many
alternative models to simulate 3D liquids such as the Lattice-
Boltzmann method [TR04] and [TR09], approaches based
on the discrete sin-cosine transform [LR09] or particle based
methods such as [MCG03], [PTB∗03], [APKG07], [SP09],
and [SG11].
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3. Methods

We simulate the liquid by solving the inviscid Euler Equa-
tions,

∂u
∂t

= −(u ·∇)u+
f
d
− ∇p

d
, (1)

subject to the incompressibility constraint

∇·u = 0, (2)

where u = [u,v,w]T is the fluid velocity field, p is the pres-
sure, t is time, d the fluid density and f is a field of external
forces.

The equations are solved in the domain specified by a sur-
face density field ρ [MMTD07], in the region where ρ > 0.5.
The surface density itself is advected with the fluid via

∂ρ

∂t
= −u ·∇ρ (3)

and periodically sharpened to prevent the 0.5 iso-contour
from being blurred by numerical damping. The interaction
of the liquid with the environment is handled by considering
the appropriate Dirichlet and Neumann boundary conditions.

3.1. Discretization

We discretize the simulation domain using a regular stag-
gered grid [HW65]. The x, y and z components of fluid ve-
locity u = (u,v,w) are stored at the center of the faces per-
pendicular to the x, y and z axis, respectively. The scalar
pressure p and the density ρ are stored at cell centers fol-
lowing [MMTD07].

3.2. Time integration

Our time integration scheme is summarized in Algorithm
1. The overall structure is the same as the one proposed
in [MMTD07] with our novel modifications to the advec-
tion, sharpening and pressure incompressibility enforcement
steps.

Algorithm 1 Time step
1: Velocity extrapolation
2: Density advection and density sharpening
3: Velocity advection and external force addition
4: Incompressibility enforcement

First, we extrapolate the velocity field into the air region.
Then, we advect the surface density field and sharpen it. Af-
ter this we advect the velocity field and take external forces
into account. Finally, we enforce incompressibility by mak-
ing the velocity field divergence free.

3.3. Velocity Extrapolation

To extrapolate the velocities from inside the liquid into the
surrounding air we use the scheme described in [CM11b],
i.e. we apply the method of [JRW07] to derive the velocities
a few grid cells away from the interface and then extrapolate
based on a hierarchy of grids to obtain velocities far away
from the surface.

3.4. Density Advection

We advect ρ using our unconditionally stable conservative
advection method which we derived from the method pro-
posed by Lentine et al. in [LGF11] and [LAF11] and im-
proved in terms of computational cost.

Lentine et al. [LGF11] modified the semi-Lagrangian advec-
tion scheme to conserve mass by ensuring that each cell dis-
tributes all its mass of the current time step among some
cells at the next time step. Let A be the matrix of the dis-
cretized advection operator such that ρ

n+1 = Aρ
n, where ρ

n

and ρ
n+1 are the density in the current and the next time step

respectively. Let w−i j (and w+
i j ) represent the fraction of value

that cell i gives to cell j which is found by backward (and
forward) tracing and computing the tri-linear interpolation
weights. The entries of A in the standard semi-Lagrangian
advection is hence Ai j = w−ji . Then, β j = ∑i Ai j is the frac-
tion of mass from cell j that gets advected. To ensure that
mass is conserved, A needs to be modified such that all the
β j are 1.

Lentine et al. [LGF11] achieve this by first iterating through
all cells j with β j > 1 and re-scaling all Ai j to Ai j/β j. In
a second step they iterate through all cells j with β j < 1
and forward trace the velocity field to adding the weights
(1− β j) by distributing them among the Ak j, where k are
the cells reached by forward tracing and tri-linear interpola-
tion. At this point, all the β j are 1, i.e. A is mass conserving.
This method works well for compressible flow on fine grids.
However, as discussed in [LAF11], the scheme produces ar-
tifacts when used for incompressible flow on coarser grids.

The problem is due to the clamping of the β j by re-scaling
which limits the amount of density that reaches certain cells.
An indicator of this amount are the γi = ∑ j Ai j. The tradi-
tional semi-Lagrangian method ensures that all the γi are 1
while the β j are arbitrary. In contrast, the scheme described
above ensures that all the β j are 1, while the γi are arbitrary.

Lentine et al. [LAF11] propose a method to ensure the β j
are all 1 while the γi stay close to 1. To this end they keep
track of the cumulative γi over time as separate variables.
The matrix A is computed by performing multiple forward
and backward traces as follows:

1. Advect γi using the backward semi-Lagrangian method
(set to 1 in the first time step).

2. Compute A by performing a backward tracing step as be-
fore, i.e. Ai j = w−ji .
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3. Scale A by the γi, i.e. Ai j← Ai j/γi.

4. Compute the β j from A.

5. Forward trace the velocity field to add the weights (1−
β j) to A for all cells j where β j < 1 by distributing them
among the Ak j, where k are the cells reached by forward
tracing and tri-linear interpolation as before, i.e. Ak j+=

(1−β j)w+
jk.

6. Compute the new γi from the updated matrix A.

7. Scale A by the γi, i.e. Ai j← Ai j/γi.

8. Re-compute the β j from the updated matrix A.

9. Clamp the β j to 1 by re-scaling Ai j← Ai j/β j.

10. Re-compute the γi from the updated A.

11. Evaluate ρ
n+1 = Aρ

n.

At this point, all the β j are 1 but the γi might still deviate
from 1. To bring them even closer to 1 Lentine et al. apply
a diffusion step on ρ

n+1 and the γi. They iterate through all
the cells dimension-by-dimension. If, for two neighboring
cells i and j, γ j > γi, they move ρ j(γ j− γi)/2γ j from cell j
to cell i and set both γ j and γi to γ j+γi

2 . If γ j < γi, the flow
happens in the opposite direction. This process is repeated 1
to 7 times per time step. Note that these diffusion iterations
do not affect the β j, so they remain 1.

Implementing the method described above on a GPU would
require 5 scatter passes per iteration in steps 4, 6, 8, 10, and
11. Scattering is expensive on GPU’s because it either re-
quires atomic operations or a prefix-scan.

We propose a modification of this method. The basic idea
is to reorder the forward tracing and the re-scaling steps to
simplify the calculations. The resulting discrete conservative
advection operator is not the same as the one computed with
the original scheme. However, both are just approximations
to the doubly-stochastic matrix (all row- and column sums
are one) closest to the original discrete advection operator.

While the visual results are of similar quality as shown in
Figure 2 and the accompanying video, our simplification re-
duces the number of scatter passes from 5 to 3. Another ad-
vantage of our new scheme is that A does not need to be
stored explicitly because the order of the operations allow
for updating ρ

n+1, β and γ directly. Not storing A explic-
itly is possible in the original scheme as well but it would
complicate the process considerably and would require even
more scatter operations.

Here is our modified scheme:

1. Advect γi using the semi-Lagrangian method (set to 1 in
the first time step).

2. Initialize β← 0.

3. Add the weights γi to β by distributing them among the
βl , where l are the cells reached by backward tracing and
tri-linear interpolation, i.e. βl+= w−li γi.

Figure 2: Snapshots from a simulation of a 2D ball of liq-
uid dropping into an empty box at a resolution of 1282 cells.
Top) Using conservative advection method of Lentine et al.
2011. Bottom) Using our conservative advection method.
The result are of similar visual quality.

4. Evaluate ρ
n+1 from ρ

n and γ
′ from γ by backward tracing

and tri-linear interpolation from cells l but this time scale
the weights by γi

max(1,βl)
, i.e. ρ

n+1
i += ∑l

γi
max(1,βl)

w−li ρ
n
l )

5. γ← γ
′. (This can be done in-place during the previous

step).

6. For each cell j whose β j < 1, add ρ
n
j(1−β j) to ρ

n+1 by
distributing the value among the ρ

n+1
k , where k are the

cells reached by the forward tracing and tri-linear inter-
polation, i.e. ρ

n+1
k += ρ

n
j(1−β j)w+

jk.

7. Similarly, for each cell j whose β j < 1, add (1− β j) to
γ by distributing the value among the γk, where k are the
cells reached by the forward tracing and tri-linear inter-
polation, i.e. γ

n+1
k += γ

n
j(1−β j)w+

jk. These two steps can
be done concurrently.

8. Apply diffusion as in the original approach.

This modified method only requires 3 scatter passes in the
steps 3, 6, and 7. As demonstrated in Table 1, our method
keeps γ in a similar range to that of [LAF11], while [LGF11]
has a much larger range, resulting in visible compressibility
artifacts.

Method Minimum γ Maximum γ

Our Method 0.627 2.403
[LAF11] 0.627 2.502
[LGF11] 0.271 9.793

Table 1: Minimum and maximum γ of our method, LAF11
and LGF11 for the situation of Figure 2. Our method and
LAF11 have similar range, while LGF11 has a much larger
range which explains the incompressibility artifacts.

3.5. Density sharpening

The technique above guarantees that mass is conserved.
However, the density field smooths out over time blurring the
0.5 iso-contour with the effect that we can no longer track
the movement of the liquid surface accurately. We solve this
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problem by manipulating ρ to sharpen the interface. Follow-
ing [MMTD07], we first compute the mass change of each
cell due to unit velocity along the x axis as

δ
x+
i =

∫
Ci

(∇· (ρ[1,0,0]T )∆T )dV, (4)

δ
x−
i =

∫
Ci

(∇· (ρ[−1,0,0]T )∆T )dV, (5)

where ∆T is the fictitious time step, which we set to 3 times
that of the simulation time step in all of our examples. We
discretize δ

x+
i and δ

x−
i using an upwind scheme to get

δ
x+
i ≈ −(ρi−ρi−(1,0,0))∆x∆T, (6)

δ
x−
i ≈ −(ρi+(1,0,0)−ρi)∆x∆T. (7)

The mass change due to unit velocity along y and z axes, δ
y+
i ,

δ
y−
i , δ

z+
i , and δ

z−
i are computed similarly.

The maximum mass increase and mass decrease due to any
unit velocity in each cell is:

∆T |∇ρ|+i= 1
∆x2(max(max(δx+

i ,0)2,min(δx−
i ,0)2)+ (8)

max(max(δy+
i ,0)2,min(δy−

i ,0)2)+ (9)

max(max(δz+
i ,0)2,min(δz−

i ,0)2))
1
2 (10)

and

∆T |∇ρ|−i=
1

∆x2(max(min(δx+
i ,0)2,max(δx−

i ,0)2)+ (11)

max(min(δy+
i ,0)2,max(δy−

i ,0)2)+ (12)

max(min(δz+
i ,0)2,max(δz−

i ,0)2))
1
2 . (13)

We then compute

wi(ρ) = (ρi−0.5)3(1−min(1,
max j∈ℵ(Ci)(|ρi−ρ j|)

τ
)),(14)

where ℵ(Ci) is the set of cells adjacent to Ci. The parameter
τ controls the maximum difference in density between two
adjacent cells, which we set to 0.4 as in [MMTD07]. This
yields the following density correction:

∆ρi = wi(ρ)

{
∆T |∇ρ|+i if wi(ρ)≥ 0
∆T |∇ρ|−i if wi(ρ)< 0

. (15)

ρ can then be sharpened by updating the density of each cell
using

ρi← ρi +∆ρi. (16)

This update sharpens the interface. However, it does not con-
serve mass. Mullen et al. [MMTD07] modify it to conserve
mass by summing up the mass change due to this update
across all cells. Then they distribute a fraction of the total
mass change back to each cell based on a local area measure.
This successfully conserves mass globally. One artifact of
this approach is that mass moves far, potentially across the
entire simulation domain. This problem can be reduced by

Figure 3: Top) The density sharpening method used by
Mullen et al. [2007] conserves mass globally but not locally,
causing the mass from a liquid ball (marked with the ar-
row) to disappear in mid air. Bottom) Our density sharpening
method conserves mass both globally and locally preserving
the mass of the liquid ball.

re-distributing mass only within connected regions as pro-
posed by [KLL∗07]. However, even with this technique, lo-
cal mass loss can still occur due to moving mass away from
small features resulting in the disappearance of small surface
details. Figure 3 top shows a scene where liquid balls are
thrown into a pool of water. The mass conserving sharpen-
ing method of [MMTD07] transfers the mass from the liquid
balls to the pool causing them to disappear mid-air. The left
side of Figure 4 illustrates the situation in greater detail.

We propose a novel method to conserve mass during the
sharpening phase that conserves mass both locally and glob-
ally. After evaluating ∆ρi using Equation 15, we modify it as
follows:

∆ρi←


−ρi if ρi +∆ρi < 0 or ρi < ε

0 if ρi > 0.5
∆ρi otherwise,

(17)

where we use ε = 10−5 in all examples. In the first line we
make sure that ρ ≥ 0 at the next time step. We also clamp
small positive densities to zero so that we do not have to
apply the sharpening operator to this cell at the next time
step, thus reducing computation cost. In the second line we
make sure that cells with ρ > 0.5 are not modified. This way
mass only moves from the air side to the liquid side. Then
we update ρi using this modified ∆ρi in Equation 16.

We then add back −∆ρi by using Algorithm 2.
TraceAlongField determines where to put the lost
mass. It starts from the cell center and follows the gradient
field of the density ∇ρ until it reaches the 0.5 iso-contour.
The tracing stops if a predefined distance D∆x is reached or
if it crosses a solid boundary. This is done using multiple
forward Euler sub-steps. ScatterValue deposits −∆ρi to
nearby grid points using tri-linear weights. If a grid point
is in a solid we set the corresponding weight to zero and
re-normalize the weights. We use values of D between 1.1
to 3.1 in all of our examples.
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Figure 4: Comparison between the sharpening scheme of Mullen et al. 07 (Left) and ours (Right). The bigger hump has a
large area with 0.5 < ρ < 1.0. In this particular case, −∑i ∆ρi is negative in the scheme of Mullen et al. 2007. This negative
mass is distributed to all the cells near interface, causing the smaller hump to become even smaller. Our method does not have
this problem because −∆ρ > 0 is only added to the nearby cells around the 0.5 iso-contour. This prevents mass from being
transported from one hump to another.

Figure 5: Left most) Initial condition of a ball dropping into
a liquid pool. Others) Liquid surface at frame 40 of simula-
tions with various values of parameter D.

Figure 5 shows the result of ball dropping into a pool us-
ing various values of D. Increasing D visually resembles the
effect of surface tension.

Algorithm 2 Local mass conservation for sharpening
1: for each cell i do
2: p = TraceAlongField(Position(i),ρ,∇ρ,D∆x)
3: ScatterValue(p,−∆ρi).
4: end for

3.6. Handling Solid Boundaries

So far, the method does not take solid fraction and solid ve-
locity into account. We use us = (us,vs,ws) for the solid ve-
locity and Vi for the fraction of non-solid matter, i.e. fluid and
air in cell i. The scalars V f

i+( 1
2 ,0,0)

, V f
i+(0, 1

2 ,0)
, and V f

i+(0,0, 1
2 )

represent the fraction of non-solid area of the positive x, y,
and z faces respectively.

δ
x+
i ≈−(ρiV

f
i+( 1

2 ,0,0)
−ρi−(1,0,0)V

f
i−( 1

2 ,0,0)
)∆x∆T, (18)

δ
x−
i ≈−(ρi+(1,0,0)V

f
i+( 1

2 ,0,0)
−ρiV

f
i−( 1

2 ,0,0)
)∆x∆T. (19)

During the simulation, the value of ρi can become larger
than Vi in some cells which is a non-valid state. We han-
dle the situation differently depending on whether the cell is
partially solid (Vi < 1) or completely non-solid (Vi = 1). If
the cell is partially solid, we first compute the excess den-
sity d = ρi−Vi. When then follow the gradient of the solid
signed distance function away from the solid for a distance
of S∆x and scatter d to nearby grid points. After this we sub-
tract d from ρi. This method keeps ρi ≤Vi in most cells near

solid boundary and guarantees ρi = 0 inside the solid. We
use S = 1 in all of our examples. With this choice excess
density gets removed from solid quickly enough to not cause
visual artifacts. The case where Vi = 1 is handled in the in-
compressibility enforcement step described in the next sec-
tion.

3.7. Enforcing Incompressibility

To enforce incompressibility, we first compute the pressure
using a variational framework [BBB07] and then use the
pressure gradient to make velocity field divergence free. The
tricky part in our case is to determine the fraction of liquid
in each cell. This fraction is used to decide whether a cell
is included in the linear pressure solve. It is also needed in
the ghost fluid method [ENGF03] to accurately handle the
liquid-air boundary. However, we cannot directly use ρ be-
cause a cell with V < 0.5 will likely have ρ < 0.5 causing
the solver to treat it erroneously as air. To fix this, we define
ρ
′ as follows:

ρ
′
i =

{
0 if Vi = 0
ρi
Vi

otherwise
. (20)

Notice that cells that are completely solid (V = 0) have
ρ
′ = 0. We then extrapolate ρ

′ from cells that have V > 0
to adjacent cells with V = 0 so they are included in the lin-
ear system. For the ghost fluid method, we also need a signed
distance function near the free surface. We approximate this
field by defining φi = −(ρ′i − 0.5)∆x and use the method
of [CM11a] to compute the coefficients of linear system for
pressure projection.

To handle the cells with ρ
′
i > 1 (whether or not V = 1 or

V < 1), we add min(λ(ρ′i−1),η)
∆x to the divergence, where we

use λ = 0.5 and η = 1 in all our examples. This artificial
divergence pushes the excess density away from the cells
whose ρ

′ > 1. Mullen et al. [MMTD07] also added this term
to the divergence but with λ = 1 and η =∞which can cause
stability problems when ρ

′ is much larger than 1. A scenario
in which this happens is when liquid flows very fast towards
a solid boundary and gets reflected due to our method for
removing excess density from the solid.
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Figure 6: A crown splash simulated with our method at reso-
lution of 1283 cells. The density field is post-processed with
the method proposed in this paper to enhance sub-grid de-
tails.

Adding additional divergence is important because in our
case, ρ

′ > 1 results in visual volume loss. With the method
described above, this problem gets gradually corrected over
time. We solve for the pressure p with the multigrid method
of [CM11a] which enforces separating solid boundary con-
ditions. Finally, we use the pressure field to make the veloc-
ity field divergence free.

3.8. Density Post Processing

For rendering, we extract the triangle mesh of the 0.5 iso-
contour of ρ using the marching cubes method [LC87]. This
approach is typically used in level-set based liquid simula-
tions as well to extract the zero contour of the signed dis-
tance field [EMF02].

The surface density ρ contains small scale details that are
not captured by the 0.5 iso-contour. This problem is clearly
visible on the right side of Figure 1 and in the bottom row
of Figure 12. Here, the regions where 0 < ρ < 0.5 represent
features such as small splashes and thin sheets that are too
small to be captured with the grid resolution used. In the
level-set approach, these features are destroyed by the re-
distancing step.

To bring out these small scale details in surface rendering,
we propose a post processing method. An important obser-
vation is that regions in which 0< ρ< 0.5 do not necessarily
represent small scale features. They also exist on the air side
of the surface of large liquid regions. In the latter case, we
want to leave ρ unchanged but in the former we want to scale
up ρ so that the features appear in the 0.5 iso-surface.

To this end, we define an additional function γi =
2min(ρi,0.5) and define the regions in which ρ needs to be
scaled up as the regions where γ≤ 0.5. So far, the two cases
above are not distinguished. However, this can be achieved
by applying a Gaussian blur filter to γ. Now, since γ > 0.5
inside liquid, those values spread across the interface and
cause γ to raise toward 1. In contrast, since γ < 0.5 every-
where inside small scale features, blurring will still result in
γ being small. We then define ρ

′′
i = ρi

min(max(γi,θ),1)
and ex-

tract the liquid surface as the 0.5 iso-surface of this modified
density field.

The effect of this post processing method is shown in Figure
6 and in the accompanying video. We used σ = 2∆x for the
Gaussian blur filter and θ = 0.01 in this example. A way to

improve the results further would be to apply thinning to the
parts of the surface that come from region with ρ < 0.5 in
order to compensate for the density up-scaling. This is part
of our future work.

4. Results

We implemented our method using CUDA and ran the sim-
ulations on an NVIDIA GTX 680. For all the examples we
used a time step size of 1/30s, ∆x = 0.05m, gravity 10m/s2

and D = 2.1. Density post-processing was turned off unless
otherwise stated. Our code run at interactive rates in all ex-
amples. The simulation times and CFL numbers are listed in
Table 2. Parameter tuning to get visually appealing results
did not take much time.

We compared our method with the particle level set (PLS)
approach [EMF02]. The results of this comparison are
shown in Figure 7 and in the accompanying video. Our
method conserves the liquid’s mass as expected and prevents
the water level from decreasing. In contrast, with PLS, most
of the liquid disappears in the course of the simulation due
to the large time step size used. We used the PLS implemen-
tation of [MF] and set the number of particles per cell to 64.

Figure 1 shows a simulation of a liquid jet in a rectangu-
lar tank. The jet has a very fast flow rate and generates
fast moving liquid splashes and sheets. The accompanying
video of this example also shows how we fill the tank from a
completely dry state by adding liquid balls. These are diffi-
cult cases for level set approaches while our method handles
them without any problem.

With our approach we were able to create, for the first time,
a 3d water demo that is both simulated and ray-traced in real
time. The scene starting with a dam break initial setup and
subsequent additions of water balls is shown in Figure 9. We
achieved a frame rate of over 30fps with two GPUs, one for
simulation and one for ray-tracing.

Figures 8 and 12 show a dam break and dropping balls in
a spherical container. In the accompanying video we shake
the container. These examples demonstrate the ability of our
method to simulate liquid in a non-axis aligned moving con-
tainer.

One way coupling with fast moving solids is shown in Figure
11 and the accompanying video. Several solid objects move
at high speed across the tank sloshing the liquid up to the air.
Our method conserves mass and prevents volume loss in this
difficult case as well.

We computed the mass and the volume enclosed by the 0.5
iso-contour of the liquid over time in various examples. The
corresponding plots are shown in Figure 10. The total mass
is computed by integrating ρ over the whole simulation grid.
To measure the volume we used marching cubes to extract
the 0.5 contour triangle mesh of ρ and determined the en-
closed volume. Our method conserves mass in all examples
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Figure 7: Liquid ball dropped inside a box simulated on a
1283 resolution grid. Left) Initial condition. Shape of the
surface at frame 40 computed with our method (middle) and
with PLS (right). PLS loses most of the mass due to the large
time step used.

Figure 8: Snapshots of a dam breaking scene in a spherical
container simulated at a resolution of 1283 cells.

and generally keeps the volume close to the true liquid vol-
ume. However, there are several situations where our method
loses volume visually. One such case is when a liquid ball
hits the ground and spreads out until it becomes thinner than
the grid spacing. Even though the density values are non-
zero, marching cubes does not generate surface meshes in
those regions. Another case is when the ratio of surface area
to volume is large. In this case, there are large regions with
ρ < 0.5 that do not contribute to the volume because the
0.5 iso-contour is empty. However, in contrast to PLS, when
such features join the main body of water again, they cor-
rectly contribute to its volume so that the global level re-
mains constant.

Name Grid CFL Time (ms)
Figure 1 256x128x128 25 113.2
Figure 5 128x128x128 8 54.2
Figure 9 128x128x64 24 26.7
Figure 8 128x128x128 14 53.4
Figure 11 256x128x128 32 118.6
Figure 12 128x128x128 20 53.8

Table 2: CFL Number and simulation time per frame for var-
ious examples. We use the time step of 1/30s in all examples.
All timing are done on GTX680.

5. Conclusion and Discussion

We proposed a method for simulating liquids that conserves
mass and is effective in keeping the volume defined by the
0.5 iso-contour close to constant. We have demonstrated the
strength of our technique in various scenarios. The method
has its limitations as well. First, although our sharpening
scheme ensures that the ρ = 0.5 interface is sharp, it does
not modify regions where ρ > 0.5. It could theoretically be
possible that the region with ρ slightly above 0.5 expands so
that the volume defined by the 0.5 iso-contour grows by a
factor of two while keeping its original mass. This, however,

Figure 12: Simulation of a liquid ball dropping inside a
spherical container at a resolution of 1283 cells. Top) Sur-
face rendering. Bottom) Volume rendering, showing many
sub-grid details not visible in the surface rendering.

does not happen in practice because the divergence free ve-
locity field prevents the liquid from expanding significantly.
An alternative to our sharpening method is to perform anti-
diffusion step [SHA11], which is an interesting avenue for
future work. Another limitation is the possibility of losing
local volume temporarily as discussed in the previous sec-
tion. The density post processing method we proposed is
an effective way to alleviate this effect. Even though our
method cannot guarantee complete volume conservation at
all times, it reduces this problem significantly in comparison
to all the previous methods we have investigated.
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