
Solid Simulation
with Oriented Particles

Matthias Müller Nuttapong Chentanez

Motivation

Traditional Deformable Simulation

• Embed visual mesh in tetrahedral mesh

• Deform visual mesh using barycentric interpolation

Tetrahedral Mesh

• Need enough tetrahedra to

– Resolve separate parts

– Hide piecewise linear deformation

– Good approximation for collision

handling

• Mesh creation non-trivial

New Approach

• Approximate the visual mesh with a sparse set of oriented particles

60 triangles (~ 200 tetras) 20 ellipsoids

Oriented Particles

• Orientation information is used

– To position anisotropic collision shapes

(ellipsoids)

– To make the simulation stable

in sparse regions

– For rubust skinning of the visual mesh

Example

Related Work

Oriented Particles

• Term introduced by

[Szeliski et al., 1992]

• Used for surface modeling and rendering

[Pfister et al., 2000]

Elastons

• [Martin et al., 2010]

– 1D, 2D and 3D structures

– Energy integration points with orientation

– Accurate: Continuum mechanics based

– Non-real-time: Seconds / frame

Shape Matching

• [Müller et al., 2005]

– Geometry based model

– Simple and fast

– Fails in sparsely sampled regions

Simulation Method

Mesh Creation

• Cover the visual mesh with particles

• Create arbitrary connectivity

• Manual and automatic tools

Shape Matching Simulation

one constraint per particle

deformed state move towards

matched

rest configuration

Singularity Problem

• Region under-sampled

in 1D and 2D structures

• Rest state transformation

not unique

Our Solution

• Replace existing particles with

6 virtual particles (conceptually)

• Distance and relative

arrangement fixed

• Need particle orientation!

• Orientation influences other

parts

→ must be properly simulated

Simulate Orientation State

x𝑝 ← x + v∆𝑡

q𝑝 ←
𝜔

𝜔
sin
𝜔 ∆𝑡

2
, cos

𝜔 ∆𝑡

2
q

v ← x𝑝 − x /∆𝑡

x ← x𝑝

𝜔 ← 𝑎𝑥𝑖𝑠 q𝑝q
−1 ∙ 𝑎𝑛𝑔𝑙𝑒 q𝑝q

−1 /∆𝑡

q ← q𝑝

Prediction

Integration

Shape Matching

x 𝑖 x𝑖
g𝑖

g𝑖 = R 𝐱 𝑖 − c + c

c = 𝑚𝑖x𝑖
𝑖

/ 𝑚𝑖
𝑖

c = 𝑚𝑖x 𝑖
𝑖

/ 𝑚𝑖
𝑖

A = RS (polar decomposition)

A = 𝑚𝑖 x𝑖 − c x 𝑖 − c
𝑇

𝑖

Oriented Particle

A = 𝑚𝑖 x𝑖 − 𝑐 𝒙 𝑖 − 𝒄
𝑇

𝑖

Moment matrix of a single spherical particle with radius r :

𝑨𝑠𝑝ℎ𝑒𝑟𝑒 = 𝜌 Rx x
𝑇𝑑𝑉 = 𝜌R xx𝑇𝑑𝑉

𝑉𝑟𝑉𝑟

=
1

5
𝑚𝑟2R

𝑨𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 =
1

5
𝑚
𝑎2 0 0
0 𝑏2 0
0 0 𝑐2

R

Generalized Shape Matching

Particle Ai are evaluated w.r.t. origin.

 𝑚𝑖 x𝑖 − c x 𝑖 − c
𝑇

𝑖

= 𝑚𝑖
𝑖

x𝑖x 𝑖
𝑇 −𝑀cc 𝑇

Factored out center: [Rivers and James, 2007]

A = A𝑖 +𝑚𝑖 x𝑖 − 𝑐 𝒙 𝑖 − 𝒄
𝑇

𝑖

 𝜌 Rx x𝑇𝑑𝑉
𝑉𝑟

= 𝜌 Rx+x𝒊 − 𝒄 (x+x 𝑖 − c)
𝑇𝑑𝑉

𝑉𝑟

 − 𝑚𝑖 x𝑖 − 𝑐 𝒙 𝑖 − 𝒄
𝑇

A𝑖 A𝑖
𝒈𝒍𝒐𝒃𝒂𝒍

Collision Handling and Skinning

Collision Primitives

• Orientation information allows anisotropic particle shapes

(ellipsoids)

• Initial radii and pose by OBB of mesh neighborhood

Ellipsoid Example: Octopus

Ellipsoid Example: Pancreas

Ellipsoid Example: Tree

Skinning Methods

• Barycentric interpolation w.r.t.

surrounding tetrahedron

• Piecewise linear

• Linear blend skinning w.r.t. k

closest oriented particles

• Curved

Curved Interpolation

Results

Intel Core i7 CPU @ 3 GHz (simulation)

GeForce GTX 480 (skinning)

900 particles, 63k triangles, 60 fps

3000 particles, 90k triangles, 25 fps

Arbitrary Shape Match Groups

• Joints via shared particles

– Free rotation only if shared particles non-oriented!

• Rigid parts

omit for shared particles

A = A𝑖 +𝑚𝑖 x𝑖 − 𝑐 𝒙 𝑖 − 𝒄
𝑇

𝑖

2000 particles, 240k triangles, 40 fps

Simplified Chain

shared

shared

600 chain links @ 45 fps (simulation + skinning)

1000 particles, 100k triangles, 35 fps

Monster Truck

2 x axle (rigid) chassis (rigid) body (plastic)

100k triangles 300 particles

10 instances @ 20 fps (simulation + skinning)

Conclusion

• Oriented particles for simulation

• Stabilization, tighter collision volumes, skinning

 • Future

– Volume conservation

– GPU implementation + game engine integration

Thank you for your attention!

