

Solid Simulation with Oriented Particles

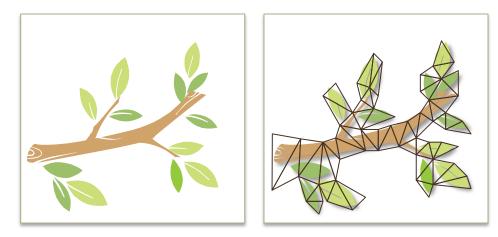
Matthias Müller

Nuttapong Chentanez

Motivation

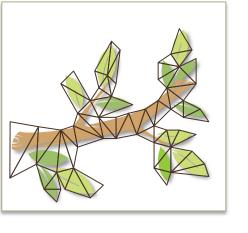
Traditional Deformable Simulation

- Embed visual mesh in tetrahedral mesh
- Deform visual mesh using barycentric interpolation



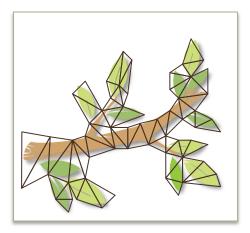
- Mesh creation non-trivial
- Good approximation for collision handling
- Hide piecewise linear deformation
- Resolve separate parts
- Need enough tetrahedra to

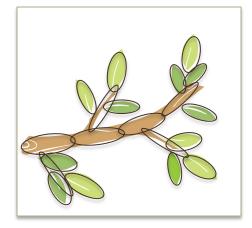
Tetrahedral Mesh



New Approach

• Approximate the visual mesh with a sparse set of oriented particles



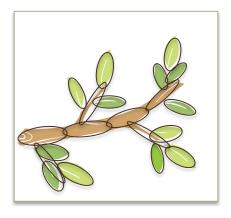


60 triangles (~ 200 tetras)

20 ellipsoids

Oriented Particles

- Orientation information is used
 - To position anisotropic collision shapes (ellipsoids)
 - To make the simulation stable in sparse regions
 - For rubust skinning of the visual mesh



Example

Related Work

Oriented Particles

• Term introduced by

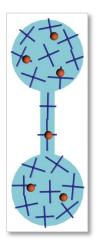
[Szeliski et al., 1992]

[Pfister et al., 2000]

• Used for surface modeling and rendering

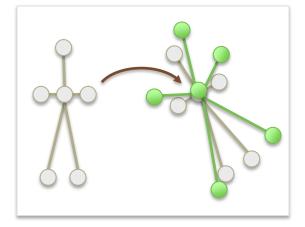
Elastons

- [Martin et al., 2010]
 - 1D, 2D and 3D structures
 - Energy integration points with orientation
 - Accurate: Continuum mechanics based
 - Non-real-time: Seconds / frame



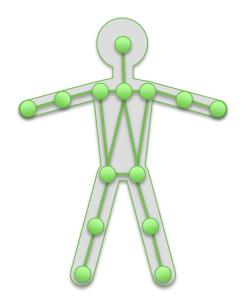
Shape Matching

- [Müller et al., 2005]
 - Geometry based model
 - Simple and fast
 - Fails in sparsely sampled regions



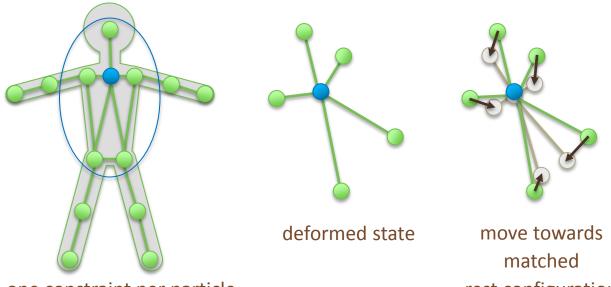
Simulation Method

Mesh Creation



- Cover the visual mesh with particles
- Create arbitrary connectivity
- Manual and automatic tools

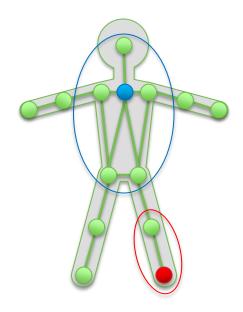
Shape Matching Simulation



one constraint per particle

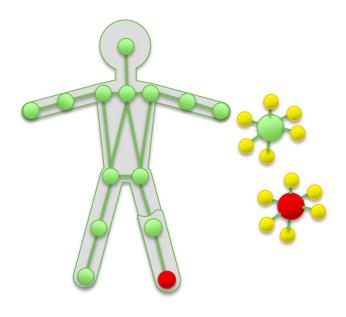
rest configuration

Singularity Problem



- Region under-sampled in 1D and 2D structures
- Rest state transformation not unique

Our Solution



- Replace existing particles with
 6 virtual particles (conceptually)
- Distance and relative arrangement fixed
- Need particle orientation!
- Orientation influences other parts
 → must be properly simulated

Simulate Orientation State

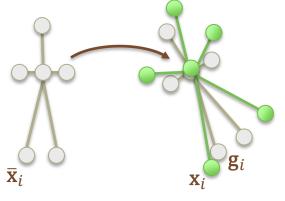
Prediction

$$\mathbf{x}_{p} \leftarrow \mathbf{x} + \mathbf{v} \Delta t$$
$$\mathbf{q}_{p} \leftarrow \left[\frac{\omega}{|\omega|} \sin\left(\frac{|\omega|\Delta t}{2}\right), \cos\left(\frac{|\omega|\Delta t}{2}\right)\right] \mathbf{q}$$

Integration

$$\mathbf{v} \leftarrow (\mathbf{x}_p - \mathbf{x}) / \Delta t$$
$$\mathbf{x} \leftarrow \mathbf{x}_p$$
$$\omega \leftarrow axis(\mathbf{q}_p \mathbf{q}^{-1}) \cdot angle(\mathbf{q}_p \mathbf{q}^{-1}) / \Delta t$$
$$\mathbf{q} \leftarrow \mathbf{q}_p$$

Shape Matching



$$\bar{\mathbf{c}} = \sum_{i} m_{i} \bar{\mathbf{x}}_{i} / \sum_{i} m_{i}$$
$$\mathbf{A} = \sum_{i} m_{i} (\mathbf{x}_{i} - \mathbf{c}) (\bar{\mathbf{x}}_{i} - \bar{\mathbf{c}})^{T}$$

 $\mathbf{c} = \sum m_i \mathbf{X}_i / \sum m_i$

$$\mathbf{g}_i = \mathbf{R}(\bar{\mathbf{x}}_i - \bar{\mathbf{c}}) + \mathbf{c}$$

A = RS (polar decomposition)

Oriented Particle

$$\mathbf{A} = \sum_{i} m_{i} (\mathbf{x}_{i} - c) (\overline{\mathbf{x}}_{i} - \overline{\mathbf{c}})^{T}$$

Moment matrix of a single spherical particle with radius *r* :

$$A_{sphere} = \int_{V_r} \rho(\mathbf{R}\mathbf{x})\mathbf{x}^T dV = \rho \mathbf{R} \int_{V_r} \mathbf{x}\mathbf{x}^T dV = \frac{1}{5}mr^2\mathbf{R}$$
$$A_{ellipsoid} = \frac{1}{5}m \begin{bmatrix} a^2 & 0 & 0\\ 0 & b^2 & 0\\ 0 & 0 & c^2 \end{bmatrix} \mathbf{R}$$

Generalized Shape Matching

Particle A_i are evaluated w.r.t. origin.

Factored out center: [Rivers and James, 2007]

$$\sum_{i} m_{i}(\mathbf{x}_{i} - \mathbf{c})(\overline{\mathbf{x}}_{i} - \overline{\mathbf{c}})^{T} = \sum_{i} m_{i} \mathbf{x}_{i} \overline{\mathbf{x}}_{i}^{T} - M \mathbf{c} \overline{\mathbf{c}}^{T}$$

$$\int_{V_{r}} \rho(\mathbf{R}\mathbf{x})\mathbf{x}^{T} dV = \int_{V_{r}} \rho(\mathbf{R}\mathbf{x} + \mathbf{x}_{i} - \mathbf{c})(\mathbf{x} + \overline{\mathbf{x}}_{i} - \overline{\mathbf{c}})^{T} dV - m_{i}(\mathbf{x}_{i} - \mathbf{c})(\overline{\mathbf{x}}_{i} - \overline{\mathbf{c}})^{T}$$

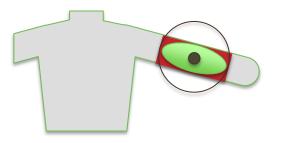
$$\mathbf{A}_{i} \qquad \mathbf{A}_{i} \qquad \mathbf{A}_{i}^{global}$$

$$\mathbf{A} = \sum_{i} (\mathbf{A}_{i} + m_{i}(\mathbf{x}_{i} - \mathbf{c})(\overline{\mathbf{x}}_{i} - \overline{\mathbf{c}})^{T})$$

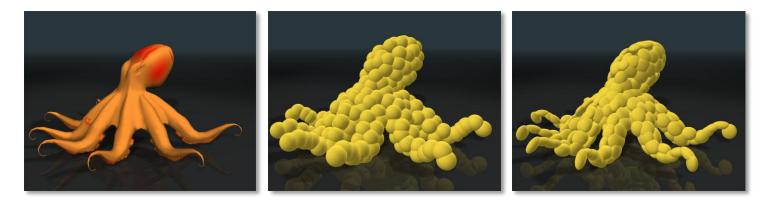
Collision Handling and Skinning

Collision Primitives

- Orientation information allows anisotropic particle shapes (ellipsoids)
- Initial radii and pose by OBB of mesh neighborhood

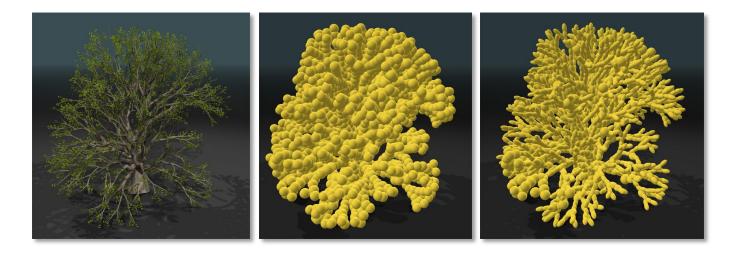


Ellipsoid Example: Octopus

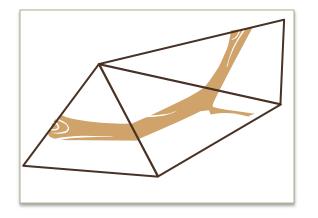


Ellipsoid Example: Pancreas

Ellipsoid Example: Tree



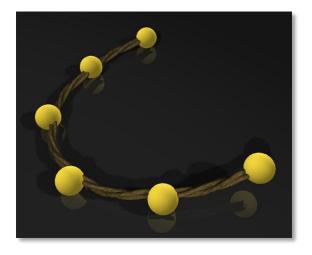
Skinning Methods



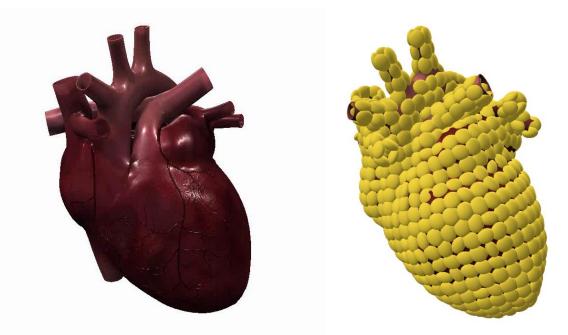
- Barycentric interpolation w.r.t. surrounding tetrahedron
- Piecewise linear

- Linear blend skinning w.r.t. *k* closest oriented particles
- Curved

Curved Interpolation



Intel Core i7 CPU @ 3 GHz (simulation) GeForce GTX 480 (skinning)



900 particles, 63k triangles, 60 fps

3000 particles, 90k triangles, 25 fps

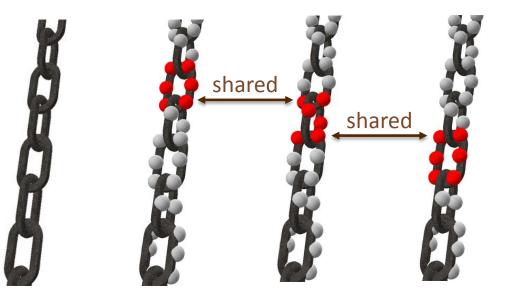
Arbitrary Shape Match Groups

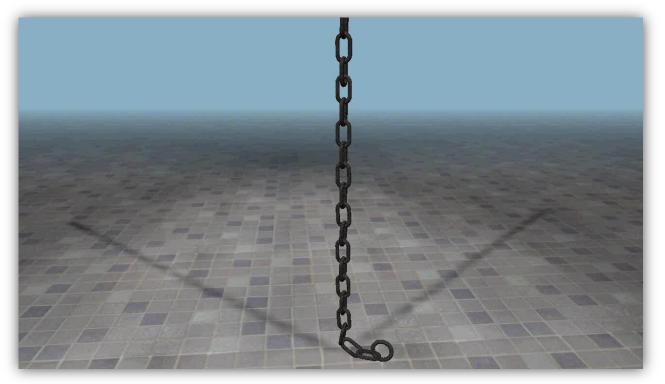
- Rigid parts
- Joints via shared particles
 - Free rotation only if shared particles non-oriented!

$$\mathbf{A} = \sum_{i} (\mathbf{A}_{i} + m_{i}(\mathbf{x}_{i} - c)(\overline{\mathbf{x}}_{i} - \overline{\mathbf{c}})^{T})$$
omit for shared particles

2000 particles, 240k triangles, 40 fps

Simplified Chain

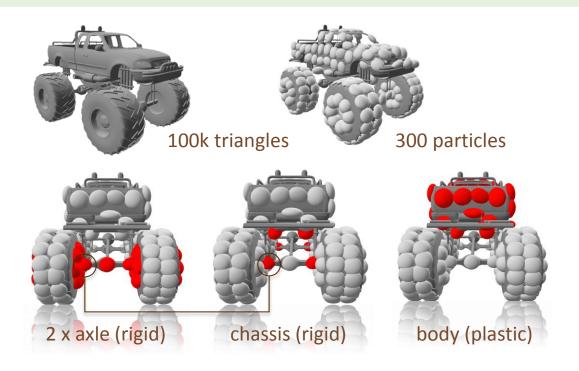




600 chain links @ 45 fps (simulation + skinning)

1000 particles, 100k triangles, 35 fps

Monster Truck



10 instances @ 20 fps (simulation + skinning)

- Oriented particles for simulation
- Stabilization, tighter collision volumes, skinning
- Future
 - Volume conservation
 - GPU implementation + game engine integration

Thank you for your attention!