

Madrid, Spain, November 2006

Position Based Dynamics

Matthias Müller Bruno Heidelberger Marcus Hennix John Ratcliff

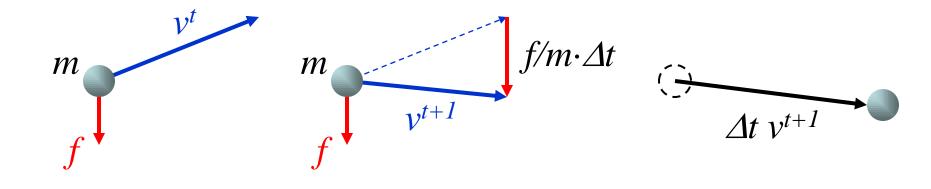
Dynamics in Games

Cell factor

Bet on soldier

Simulating a Dynamical System

• Explicit Euler integration:



- Accuracy problem: no issue in a game
- Stability problem: big issue in a game

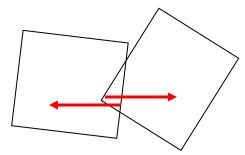
Overshooting Problem

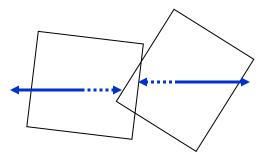
$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \mathbf{v}(t) \cdot \Delta t \quad \mathbf{vs.} \quad \mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \int_{t}^{t + \Delta t} \mathbf{v}(t) dt$$

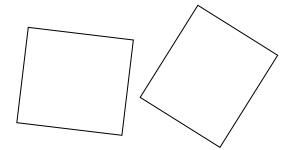
outwards spin

amplitude build up

Force Based Update







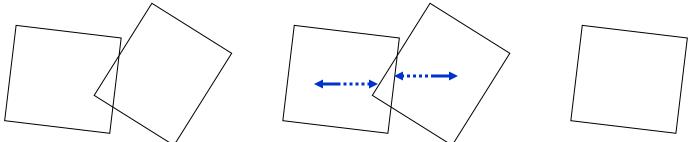
penetration causes forces

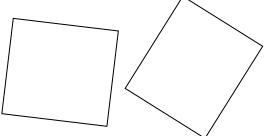
forces change velocities

velocities change positions

- Need overlap
- Reaction lag
- Strong force \rightarrow stiff system, overshooting
- Weak force \rightarrow squishy system

Velocity Based Update

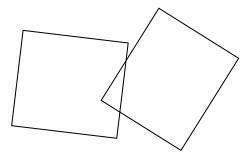


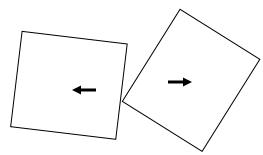


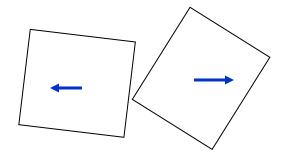
penetrationchange velocities so thatvelocitiesdetection onlythey separate objectschange positions

- Controlled velocity change (via impulses)
- Only as much as needed \rightarrow no overshooting
- Drift: Consistent velocities to not guarantee consistent positions!

Position Based Update







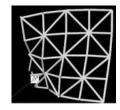
penetration detection only

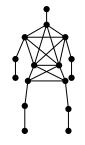
move objects so that they do not penetrate update velocities!

- Controlled position change
- Only as much as needed \rightarrow no overshooting
- No drift
- Velocity update needed to get 2nd order system!

Related Work

- Verlet Integration
- Faure, Interactive solid animation using linearized displacement constraints, EGCAS 1998
- Jakobsen, Advanced character physics & the fysx engine, GDC 2001
- Fedor, Fast character animation using particle dynamics, GVIP 2005
- Müller et al., Meshless deformations based on shape matching, Siggraph 2005





Verlet Integration

Derivation

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \mathbf{v}(t) \cdot \Delta t + \frac{1}{2}\mathbf{a}(t) \cdot \Delta t^{2} + \frac{1}{2}\mathbf{\ddot{x}}(t) \cdot \Delta t^{3} + O(\Delta t^{4})$$

+
$$\mathbf{x}(t - \Delta t) = \mathbf{x}(t) - \mathbf{v}(t) \cdot \Delta t + \frac{1}{2}\mathbf{a}(t) \cdot \Delta t^{2} - \frac{1}{2}\mathbf{\ddot{x}}(t) \cdot \Delta t^{3} + O(\Delta t^{4})$$

$$\mathbf{x}(t + \Delta t) + \mathbf{x}(t - \Delta t) = 2\mathbf{x}(t) + \Delta t^2 \mathbf{a}(t) + O(\Delta t^4)$$

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \left[x(t) - x(t - \Delta t)\right] + \Delta t^2 \mathbf{a}(t) + O(\Delta t^4)$$

Velocity stored implicitly in the previous position

Position Based Integration

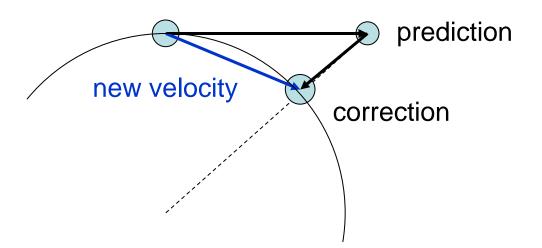
• Verlet: $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + [x(t) - x(t - \Delta t)] + \Delta t^2 \mathbf{a}(t) + O(\Delta t^4)$

```
Init \mathbf{x}(0), \mathbf{v}(0)Loop\mathbf{x}^{\mathbf{p}}(t+\Delta t) = \mathbf{x}(t) + \Delta t \cdot \mathbf{v}(t)// prediction\mathbf{x}(t+\Delta t) = \text{modify } \mathbf{x}^{\mathbf{p}}(t+\Delta t)// position correction\mathbf{v}^{\mathbf{p}}(t+\Delta t) = [\mathbf{x}(t+\Delta t) - \mathbf{x}(t)] / \Delta t// velocity update\mathbf{v}(t+\Delta t) = \text{modify } \mathbf{v}^{\mathbf{p}}(t+\Delta t)// velocity correctionEnd loop
```

- Verlet plus position / velocity corrections
- Corrections change the dynamic state!

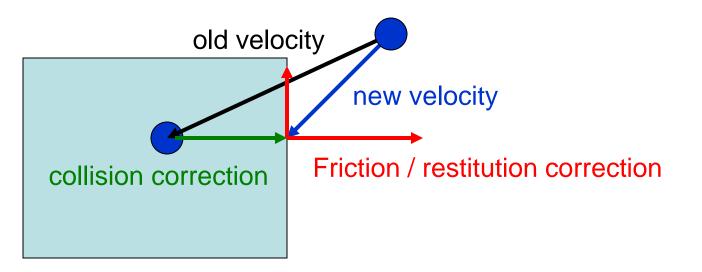
Position Correction

- Move vertices out of other objects
- Move vertices such that constraints are satisfied
- Example: Particle on circle



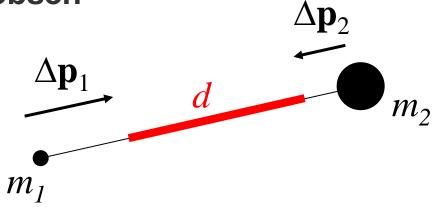
Velocity Correction

- External forces: $\mathbf{v}(t+\Delta t) = \mathbf{v}^{\mathbf{p}} (t+\Delta t) + \Delta t \cdot \mathbf{f}(t)/m$
- Internal damping
- Friction
- Restitution



Internal Distance Constraint

Jakobsen



$$\Delta \mathbf{p}_1 = -\frac{w_1}{w_1 + w_2} \left(|\mathbf{p}_1 - \mathbf{p}_2| - d \right) \frac{\mathbf{p}_1 - \mathbf{p}_2}{|\mathbf{p}_1 - \mathbf{p}_2|}$$

$$W_i = \frac{1}{m_i}$$

1

$$\Delta \mathbf{p}_2 = + \frac{w_2}{w_1 + w_2} \left(|\mathbf{p}_1 - \mathbf{p}_2| - d \right) \frac{\mathbf{p}_1 - \mathbf{p}_2}{|\mathbf{p}_1 - \mathbf{p}_2|}$$

General Internal Constraints

Scalar constraint function

 $C(\mathbf{p}) = 0 \iff \text{constraint satisfied}$

• Compute Δp such that

 $C(\mathbf{p} + \Delta \mathbf{p}) \cong C(\mathbf{p}) + \nabla_{\mathbf{p}} C(\mathbf{p}) \cdot \Delta \mathbf{p} = 0$

- Rigid body modes do not change *C*(p)
- Do not influence rigid body modes (ghost forces)
- Search perpendicular to rigid body modes: $\Delta \mathbf{p} = \lambda \nabla_{\mathbf{p}} C(\mathbf{p})$

$$\Delta \mathbf{p} = -\frac{C(\mathbf{p})}{\left|\nabla_{\mathbf{p}} C(\mathbf{p})\right|^2} \nabla_{\mathbf{p}} C(\mathbf{p})$$

General Internal Constraints

- General correction for n point constraints
- Including masses

$$\Delta \mathbf{p}_i = -s \frac{n \cdot w_i}{\sum_j w_j} \nabla_{\mathbf{p}_i} C(\mathbf{p}_1, \dots, \mathbf{p}_n) \qquad s = \frac{C(\mathbf{p}_1, \dots, \mathbf{p}_n)}{\sum_j \left| \nabla_{\mathbf{p}} C(\mathbf{p}_1, \dots, \mathbf{p}_n) \right|^2}$$

Examples

 $C_{stretch}(\mathbf{p}_1,\mathbf{p}_2) = |\mathbf{p}_1 - \mathbf{p}_2| - d \rightarrow \mathbf{Jakobsen}$

$$C_{bend}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3},\mathbf{p}_{4}) = \arccos\left(\frac{(\mathbf{p}_{2}-\mathbf{p}_{1})\times(\mathbf{p}_{3}-\mathbf{p}_{1})}{|(\mathbf{p}_{2}-\mathbf{p}_{1})\times(\mathbf{p}_{3}-\mathbf{p}_{1})|} \bullet \frac{(\mathbf{p}_{2}-\mathbf{p}_{1})\times(\mathbf{p}_{4}-\mathbf{p}_{1})}{|(\mathbf{p}_{2}-\mathbf{p}_{1})\times(\mathbf{p}_{4}-\mathbf{p}_{1})|}\right) - \varphi_{0}$$

 $C_{volume}(\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3,\mathbf{p}_4) = \left[(\mathbf{p}_2 - \mathbf{p}_1 \times (\mathbf{p}_3 - \mathbf{p}_1)) \right] \cdot (\mathbf{p}_4 - \mathbf{p}_1) - v_0$

Position Solver

- Non-linear Gauss Seidel
- Iterate
 - Go through all constraints
 - Move (project) points according to the constraint

Remarks

- Gauss Seidel is order dependent
- Last constraints are strongest
- Projection is a non-linear step
- Takes time for pressure waves to propagate through objects

Conclusions / Future Work

