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Dynamics in Games 

Cell factor Bet on soldier 



Simulating a Dynamical System 

• Explicit Euler integration: 
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• Accuracy problem: no issue in a game 

• Stability problem: big issue in a game 
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Overshooting Problem 

outwards spin 
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amplitude build up 



Force Based Update 

penetration 

causes forces 

forces change 

velocities 

velocities 

change positions 

• Need overlap 

• Reaction lag 

• Strong force  stiff system, overshooting 

• Weak force  squishy system 



Velocity Based Update 

penetration 

detection only 

change velocities so that 

they separate objects 

velocities 

change positions 

• Controlled velocity change (via impulses) 

• Only as much as needed   no overshooting 

• Drift: Consistent velocities to not guarantee 

consistent positions! 



Position Based Update 

penetration 

detection only 

move objects so that 

they do not penetrate 

update velocities! 

• Controlled position change 

• Only as much as needed   no overshooting 

• No drift 

• Velocity update needed to get 2nd order system! 
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Verlet Integration 

• Derivation 
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• Velocity stored implicitly in the previous position 



Position Based Integration 
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Init x(0), v(0) 

Loop 

 xp(t+Dt)  = x(t) + Dt·v(t) // prediction 

 x(t+Dt)  = modify xp(t+Dt) // position correction 

 vp(t+Dt)  = [x(t+Dt) – x(t)] /Dt // velocity update 

 v(t+Dt)  = modify vp (t+Dt)  // velocity correction 

End loop 

• Verlet plus position / velocity corrections 

• Corrections change the dynamic state! 

• Verlet: 



Position Correction 

• Move vertices out of other objects 

• Move vertices such that constraints are satisfied 

• Example: Particle on circle 

prediction 

correction 
new velocity 



Velocity Correction 

• External forces: v(t+Dt) = vp (t+Dt)+ Dt·f(t)/m 

• Internal damping 

• Friction 

• Restitution 

collision correction 

new velocity 

Friction / restitution correction 

old velocity 



Internal Distance Constraint 

• Jakobsen 
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General Internal Constraints 

0)( pC

• Scalar constraint function 

 constraint satisfied 
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• Compute Dp such that 

• Rigid body modes do not change C(p) 

• Do not influence rigid body modes (ghost forces) 

• Search perpendicular to rigid body modes: )(pp pCD 

)(
)(

)(
2

p
p

p
p p

p

C
C

C



D



General Internal Constraints 

• General correction for n point constraints 

• Including masses 
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• Examples 
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Position Solver 

• Non-linear Gauss Seidel 

• Iterate 

• Go through all constraints 

• Move (project) points according to the constraint 

• Remarks 

• Gauss Seidel is order dependent 

• Last constraints are strongest 

• Projection is a non-linear step 

• Takes time for pressure waves to propagate through objects 



Results 

 



Conclusions / Future Work 

 


