
Position Based Dynamics

Bruno Heidelberger Marcus Hennix John Ratcliff Matthias Müller

Dynamics in Games

Cell factor Bet on soldier

Simulating a Dynamical System

• Explicit Euler integration:

m
vt

f

m

vt+1

f

f/m·Dt

• Accuracy problem: no issue in a game

• Stability problem: big issue in a game

Dt vt+1

Overshooting Problem

outwards spin

dttttt

tt

t

D

D)()()(vxxttttt DD)()()(vxx vs.

amplitude build up

Force Based Update

penetration

causes forces

forces change

velocities

velocities

change positions

• Need overlap

• Reaction lag

• Strong force stiff system, overshooting

• Weak force squishy system

Velocity Based Update

penetration

detection only

change velocities so that

they separate objects

velocities

change positions

• Controlled velocity change (via impulses)

• Only as much as needed no overshooting

• Drift: Consistent velocities to not guarantee

consistent positions!

Position Based Update

penetration

detection only

move objects so that

they do not penetrate

update velocities!

• Controlled position change

• Only as much as needed no overshooting

• No drift

• Velocity update needed to get 2nd order system!

Related Work

• Jakobsen, Advanced character physics & the fysx

engine, GDC 2001

• Verlet Integration

• Fedor, Fast character animation using particle

dynamics, GVIP 2005

• Faure, Interactive solid animation using linearized

displacement constraints, EGCAS 1998

• Müller et al., Meshless deformations based on shape

matching, Siggraph 2005

Verlet Integration

• Derivation

)()(
2

1
)(

2

1
)()()(432 tOttttttttt DDDDD xavxx

)()(
2

1
)(

2

1
)()()(432 tOttttttttt DDDDD xavxx +

)()()(2)()(42 tOttttttt DDDD axxx

)()()()()()(42 tOttttxtxttt DDDD axx

• Velocity stored implicitly in the previous position

Position Based Integration

)()()()()()(42 tOttttxtxttt DDDD axx

Init x(0), v(0)

Loop

 xp(t+Dt) = x(t) + Dt·v(t) // prediction

 x(t+Dt) = modify xp(t+Dt) // position correction

 vp(t+Dt) = [x(t+Dt) – x(t)] /Dt // velocity update

 v(t+Dt) = modify vp (t+Dt) // velocity correction

End loop

• Verlet plus position / velocity corrections

• Corrections change the dynamic state!

• Verlet:

Position Correction

• Move vertices out of other objects

• Move vertices such that constraints are satisfied

• Example: Particle on circle

prediction

correction
new velocity

Velocity Correction

• External forces: v(t+Dt) = vp (t+Dt)+ Dt·f(t)/m

• Internal damping

• Friction

• Restitution

collision correction

new velocity

Friction / restitution correction

old velocity

Internal Distance Constraint

• Jakobsen

m1

m2
d

Dp1

Dp2

21

21
21

21

1
1

pp

pp
ppp

D d

ww

w

21

21
21

21

2
2

pp

pp
ppp

D d

ww

w

i

i
m

w
1

General Internal Constraints

0)(pC

• Scalar constraint function

 constraint satisfied

0)()()(DD ppppp pCCC

• Compute Dp such that

• Rigid body modes do not change C(p)

• Do not influence rigid body modes (ghost forces)

• Search perpendicular to rigid body modes:)(pp pCD

)(
)(

)(
2

p
p

p
p p

p

C
C

C

D

General Internal Constraints

• General correction for n point constraints

• Including masses

j n

n

C

C
s

2

1

1

),...,(

),...,(

pp

pp

p

),...,(1 n

j j

i
i C

w

wn
s

i
ppp p

D

• Examples

dCstretch 2121),(pppp

0

1412

1412

1312

1312
4321

)()(

)()(

)()(

)()(
arccos),,,(

pppp

pppp

pppp

pppp
ppppbendC

 Jakobsen

 01413124321)()((),,,(vCvolume pppppppppp

Position Solver

• Non-linear Gauss Seidel

• Iterate

• Go through all constraints

• Move (project) points according to the constraint

• Remarks

• Gauss Seidel is order dependent

• Last constraints are strongest

• Projection is a non-linear step

• Takes time for pressure waves to propagate through objects

Results

Conclusions / Future Work

