
1

www.matthiasmueller.info/realtimephysics

Real Time PhysicsReal Time Physics

Matthias Müller Doug James

Cornell University

Jos Stam Nils Thuerey

2

ScheduleSchedule

• 8:30 Introduction, Matthias Müller

• 8:45 Deformable Objects, Matthias Müller

• 9:30 Multimodal Physics and User Interaction

Doug James

• 10:15 Break• 10:15 Break

• 10:30 Fluids, Nils Thuerey

• 11:15 Unified Solver, Jos Stam

• 12:00 Q & A

3

Real Time DemosReal Time Demos

4

Before Real Time PhysicsBefore Real Time Physics

• My Ph.d. thesis:

– Find 3d shape of dense polymer systems

!BIOSYM molecular_data 4

@molecule POLYCARB_B0

!BIOSYM archive

PBC=OFF@molecule POLYCARB_B0

CARB_1:C C cp C1/1.5 C5/1.5 HC

CARB_1:HC H hc C

CARB_1:C1 C cp C/1.5 C2/1.5 H1

CARB_1:H1 H hc C1

CARB_1:C2 C cp C1/1.5 C3/1.5 C7

CARB_1:C3 C cp C2/1.5 C4/1.5 H3

CARB_1:H3 H hc C3

CARB_1:C4 C cp C3/1.5 C5/1.5 H4

CARB_1:H4 H hc C4

...

...

C 3.313660622 -2.504962206 -11.698267937

HC 2.429594755 -2.005253792 -12.065854073

C1 4.420852184 -1.754677892 -11.284504890

H1 4.390906811 -0.676178515 -11.332902908

C2 5.566863537 -2.402448654 -10.808005333

C3 5.605681896 -3.800502777 -10.745265961

H3 6.489747524 -4.300211430 -10.377680779

C4 4.498489857 -4.550786972 -11.159029007

H4 4.528435707 -5.629286766 -11.110631943

...

...

5

Meeting Real Time PhysicsMeeting Real Time Physics

• Post doc at MIT (1999-2001)

– Plan: Parallelization of packing algorithms

– Prof had left MIT before I arrived!

•• Change of research focus

– Computer graphics lab on same floor

– Real-time physics needed for a

virtual sculptor

B.Cutler et al.

6

19991999

• Among my literature search:

– D. James et al., ArtDefo, Accurate Real Time

Deformable Objects, Siggraph 1999

– J.Stam, Stable Fluids, Siggraph 1999

• They brought physics brought to life!

• My assignment: make this real-time:

– J. O‘Brien at al., Graphical Modeling and Animation of

Brittle Fracture, Siggraph 1999

7

ArtDefoArtDefo

• Boundary element method

• Haptic interaction

8

Doug JamesDoug James

• CV

– 2001: PhD in applied mathematics, University of British Columbia

– 2002: Assistant prof, Carnegie Mellon University

– 2006: Associate prof, Cornell Universtiy

– National Science Foundation CAREER award– National Science Foundation CAREER award

• Research interests

– Physically based animation

– Haptic force feedback rendering

– Reduced-order modeling

9

Stable FluidsStable Fluids

• Semi-Lagrangian advection

• Equation splitting

10

Jos StamJos Stam

• CV

– PhD in computer science, University of Toronto

– Postdoc in Paris and Helsinki

– Senior research scientist at Alias|Wavefront, now Autodesk

– SIGGRAPH Technical Achievement Award– SIGGRAPH Technical Achievement Award

• Research interests

– Natural phenomena

– Physics based simulation

– Rendering and surface modeling

11

Animation of Brittle FractureAnimation of Brittle Fracture

• Finite elements, separation tensor

• Great results but 5-10 min/frame

J. O‘Brien et al.

12

Real-Time Fracture of Stiff MaterialsReal-Time Fracture of Stiff Materials

• Hybrid rigid body – static FEM

• Not quite as realistic but 30 fps

M.Müller et al. Eurographics CAS 2001

13

Deformables and WaterDeformables and Water

• Post doc with ETH computer graphics lab

FEM base deformables SPH fluids

2003, Video by D.Charypar2004

14

NovodeX - AGEIANovodeX - AGEIA

• 2003 NovodeX as ETH spin-off

• 2004 Acquisition by AGEIA

• 2007 Nils Thuerey AGEIA post doc

15

Nils ThuereyNils Thuerey

• CV

– 2007: PhD in computer science from University Erlangen

– 2007: Post doc with AGEIA

– 2008: Post doc with ETH

• Research interests

– Lattice-Boltzmann based fluid simulation

– Real-time height field fluid simulation

– Fluid Control

16

Offline PhysicsOffline Physics

• Applications

– Special effects in movies and commercials

• Typical setup

– Millions of particles / triangles / tetrahedra / grid cells

– Expensive photorealistic rendering

– Impressive high quality results

– Seconds up to hours per frame

• Characteristics

– Predictable, re-run possible, no interaction

17

Real Time PhysicsReal Time Physics

• Applications

– Interactive systems

– Virtual surgery simulators („respectable“, „scientific“)

– Games (not so respectable but true in 99%)

• Requirements• Requirements

– Fast, 40-60 fps of which physics only gets a small fraction

– Stable in any possible, non-predictable situation

• Challenge:

– Approach offline results while meeting all requirements!

18

From Offline to Real TimeFrom Offline to Real Time

• Resolution reduction

– Blobby and coarse look

– Details disappear

• Use specialized real time techniques!• Use specialized real time techniques!

– Physics low-res, appearance hi-res (shader effects)

– Reduction of dimension from 3d to 2d (height field fluids, BEM)

– Level of detail (LOD)

– No equation solving, procedural animation for specific effects

19

Deformable ObjectsDeformable Objects

20

21

Examples of Deformable ObjectsExamples of Deformable Objects

• 1d: Ropes, hair

• 2d: Cloth, clothing• 2d: Cloth, clothing

• 3d: Fat, tires, organs

22

DimensionalityDimensionality

• Every real object is 3d

• Approximated object with lower dimentional models if

possible

• Dimension reduction substantially saves simulation time• Dimension reduction substantially saves simulation time

23

Mass Spring SystemsMass Spring Systems

24

Mass Spring MeshesMass Spring Meshes

• Rope: chain

– Additional springs for bending

and torsional resistance needed

• Cloth: triangle mesh

• Soft body: tetrahedral mesh

• Cloth: triangle mesh

– Additional springs for bending

restistance needed

25

Mass Spring PhysicsMass Spring Physics

• Springs: xi xj

f -f

• Mass point: mass m, position x, velocity v

x m
v















−

−
⋅−+−−

−

−
=

ij

ij

ijdoijs

ij

ij
klk

xx

xx
vvxx

xx

xx
f)()(

l0

• Scalars ks, kd, stretching, damping coefficients

26

Time IntegrationTime Integration

• Newton:
vx

fv

=

=

&

& m/

11

1
),,,(

1

++

+

∆+=

∆+= ∑
ttt

j

t

j

t

j

t

i

t

i

i

t

i

t

i

t

m
t

vxx

vxvxfvv• Explicit Euler:

• Assumes velocity and force constant within ∆t

11 ++
∆+=

t

i

t

i

t

i tvxx

dttttt

tt

t

∫
∆+

+=∆+)()()(vxx

• Correct would be:

27

Explicit Euler IssuesExplicit Euler Issues

• Accuracy

– Better with higher order schemes e.g. Runge Kutta

– Not critical in real time environments

∆t2f/m
• Stability

– Overshooting

– Big issue in

real time systems!

28

Implicit IntegrationImplicit Integration

11

11111
),,,(

1

++

+++++

∆+=

∆+= ∑
t

i

t

i

t

i

j

t

j

t

j

t

i

t

i

i

t

i

t

i

t

m
t

vxx

vxvxfvv

• Use values of next time step on the right

• Intuitively

– Don‘t extrapolate blindly

– Arrive at a physical configuration

iii

29

Implicit Integration IssuesImplicit Integration Issues

• Unconditionally stable (for any ∆t)!

• Have to solve system of equations for velocities

– n mass points, 3n unknowns

– Non linear when the forces are non-linear – Non linear when the forces are non-linear

in the positions as with springs

– Linearize forces at each time step (Newton-Raphson)

• Slow → Take large time steps

• Temproal details disappear, numerical damping

30

Position Based DynamicsPosition Based Dynamics

31

Force Based UpdateForce Based Update

penetration causes

forces

velocities change

positions

forces change

velocities

• Reaction lag

• Small ks → squashy system

• Large ks → stiff system, overshooting

32

Position Based UpdatePosition Based Update

penetration

detection only

move objects so that

they do not penetrate
update velocities!

• Controlled position change

• Only as much as needed → no overshooting

• Velocity update needed to get 2nd order system!

33

Position Based IntegrationPosition Based Integration

Init all xi
0, vi

0

Loop

pi = xi
t + ∆t·vi

t // prediction

xi
t+1 = modify pi // position correction

ui = [xi
t+1 – xi

t] /∆t // velocity update

• Explicit, Verlet related

• If correction done by a solver → semi implicit

ui = [xi – xi] /∆t // velocity update

vi
t+1 = modify ui // velocity correction

End loop

34

Position CorrectionPosition Correction

• Move vertices out of other objects

• Move vertices such that constraints are satisfied

• Example: Particle on circle

predictionprediction

correction
new velocity

35

Velocity CorrectionVelocity Correction

• External forces: vt = ut + ∆t·g/m

• Internal damping

• Friction

• Restitution• Restitution

collision correction

prediction

restitution

friction

corrected

velocity

36

Internal Distance ConstraintInternal Distance Constraint

()
21

21
021

21

1
1

xx

xx
xxx

−

−
−−

+
−=∆ l

ww

w

mw /1=

()
21

21
021

21

2
2

xx

xx
xxx

−

−
−−

+
+=∆ l

ww

w
m1

m2
l0

∆x1

∆x2

ii mw /1=

• Conservation of momentum

• Stiffness: scale corrections by k ∈ [0..1]

• Easy to tune but effect dependent on time step!

37

General Internal ConstraintGeneral Internal Constraint

• Define constraint via scalar function:

02121),(lCstretch −−= xxxx

[] 01413124321 6)()()(),,,(vCvolume −−⋅−×−= xxxxxxxxxx

C=0 ∇C

Rigid body modes

38

General Position CorrectionGeneral Position Correction

),...,(1 nii Cws
i

xxx x∇−=∆

• Correction along gradient

• Scalar s tells us how far to go

∑ ∇
=

j nj

n

Cw

C
s

2

1

1

),...,(

),...,(

xx

xx

x

• Scalar s tells us how far to go

39

Shape Matching IdeaShape Matching Idea

• Optimally match

undeformed with

deformed shape

• Only allow translation

and rotation

pi

∆xi

and rotation

• Global correction, no

propagation needed

• No mesh needed!

40

Shape MatchingShape Matching

• Let xi be the undeformed vertex positions

• The optimal translation is

cmcm xpt −=

• The optimal linear transformation is

∑∑∑∑ ==
i

ii

i

icm

i

ii

i

icm mmmm / and / xxppwhere

• The optimal linear transformation is

1

))(())((

−









−−








−−= ∑∑ T

cmicmi

i

i

T

cmicmi

i

i mm xxxxxxppA

• The optimal rotation R is the rotational part of A

(use polar decomposition)

41

2d Shape Matching Demo2d Shape Matching Demo

42

Working with Points and EdgesWorking with Points and Edges

• No notion of volume or area

– Spring stiffness (N/m) not related to 3d stiffness (N/m2)

• Volumetric behavior dependent on

– Tesselation of volume

– Hand tune spring stiffnesses

• Often OK in real time environments

– Evenly tesselated physics meshes

– Fixed time step

43

Co-Rotated Finite ElementsCo-Rotated Finite Elements

44

Continuum Mechanics on one SlideContinuum Mechanics on one Slide

• Body as continuous set of points

• Deformation continuous function p(x)

• Elasticity theory yields felast(x) from p(x)

• PDE of motion (Newton): x

p(x)

• PDE of motion (Newton): x

),(),(),(ttt extelasttt xfxfxp +=ρ

• Solve for p(x,t)

• Analytical solution only for very simple problems

45

Finite Element Method on one SlideFinite Element Method on one Slide

• Represent body by set of finite elements (tetrahedra)

• Represent continuous p(x) by vectors pi on vertices

x3 p3 p1

x0

x1
x2

p2

p0

• pi induce simple continuous p(x) within each element

• Continuous elasticity theory yields forces at vertices

46

Hyper SpringHyper Spring

• Vertex forces depend on displacements of all 4 vertices

• Tetrahedron acts like a hyper spring

• Compare to: [f , f] = F (p ,p ,l)

),,,,,,,(],,,[321032103210 xxxxppppffff tetraF=

• Compare to: [f0, f1] = Fspring(p0,p1,l0)

• Given Ftetra () -blackbox, simulate as mass spring system

• Ftetra () is non linear, expensive

47

LinearizationLinearization

• Linearization Ftetra () of yields

1212

22

11

00

2

1

0

, ×∈










−

−

−

=










RK
xp

xp

xp

K
f

f

f

33

22

3

2







 −

−







 xp

xp

f

f

• K depends on x0, x1, x2, x3 and can be pre-computed
(see class notes for how to compute)

• Much faster to evaluate

48

Linearization ArtifactLinearization Artifact

• Linearization only valid close to

the point of linearization

f

linearized non-linear

x p

49

Corotational FormulationCorotational Formulation

• Only rotations problematic, translations OK

• Extract rotation:

p-x
Rf

RK(RTp-x)

p-x

RT

K(RTp-x)RTp-x

50

Rotational PartRotational Part

• Modified force computation



























−

























=













2

1

0

2

1

0

2

1

0

x

x

x

pR

pR

pR

K
0R00

00R0

000R

f

f

f

T

T

T































 33

2

3 xpRR000f T

• Transformation matrix
1

030201030201],,][,,[−−−−−−−= xxxxxxppppppA

• Rotation via polar decomposition of A

51

AdvantagesAdvantages

• Matrix K can still be precomputed

• Artifacts removed

• Faster force computation in explicit

formulationformulation

• Implicit time integration yields linear system

→ no Newton-Raphson solver needed

52

FEM DemoFEM Demo

53

ConclusionsConclusions

• Trade-off speed, accuracy, stability

• Choose method accordingly

• Stability most important in real time systems

– Non predictable situations– Non predictable situations

– No time step adaptions

– No roll backs

• Remaining choice: accuracy vs. speed

54

Cloth in GamesCloth in Games

55

Mesh GenerationMesh Generation

• Input

– Graphical triangle surface mesh

– Extreme case: Triangle soup

• Output• Output

– Input independent tesselation

– User specify resolution (LOD)

– Equally sized elements (stability, spatial hashing)

56

Surface CreationSurface Creation

• Input triangle mesh

• Each triangle adds density

to a regular grid

• Extract iso surface using • Extract iso surface using

marching cubes

• Optional: Keep largest

connected mesh only

• Quadric simplification

57

Tetrahedra CreationTetrahedra Creation

• Delaunay

Tetrahedralization on

vertices of surface mesh

• Triangles of surface mesh

are used for clippingare used for clipping

tetrahedra (if necessary)

• Graphical mesh is moved

along with tetra mesh

using barycentric coords

