
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2016), pp. 1–9
Ladislav Kavan and Chris Wojtan (Editors)

Real-time Simulation of Large Elasto-Plastic Deformation
with Shape Matching

Nuttapong Chentanez Matthias Müller Miles Macklin

NVIDIA

Figure 1: Snapshot from a real-time simulation of an armadillo shaped solid being shot in various places, εγ = 0.1, υ = 0.9, κ = 0 and
K = 0.1.

Abstract
Shape matching is a popular method for simulating deformable objects in real time as it is fast and stable at large time steps.
Although shape matching can simulate large elastic deformation and ductile fracturing, until now, they are limited to scenarios
with relatively small plastic deformation. In this work, we present a method for simulating deformable solids undergoing large
plastic deformation and topological changes using shape matching within the position based dynamics (PBD) framework.
This expands the versatility of PBD which was previously shown to be able to simulate rigid bodies, liquids, gases, cloth,
and deformable solids with moderate plastic deformation. Our novel contributions include local particle re-sampling, cluster
re-sampling and skinning of an explicitly tracked surface mesh.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Animation/Physical Simulation—
Physical Simulation

1. Introduction

Shape matching is a popular method for simulating deformable
solids represented by particles. It is based on a compliant constraint
formulation which is stable and efficient enough for real-time appli-
cations. Because it is a geometric method it is well suited to elastic,
or near rigid, materials where there is a well defined goal configu-
ration. While simulating elastic materials has been well explored,
the added ability to simulate large plastic deformation is necessary
to simulate many real-world materials such as taffy, dough, and
foams.

A variety of extensions to shape-matching to support plastic de-
formation have been proposed [MHT05], [Cho14] and [JML∗16].
These methods typically adjust the reference configuration of parti-
cles in response to deformation using a heuristic constitutive model.
This approach, however, is not suitable for large plastic deforma-
tion where particle separation can cause severe under-sampling,
and the original shape-matching groups can no longer represent all
modes of deformation.

Particle re-sampling strategies such as the ones proposed in [SB12],
[APKG07] [ATT12], and [JWJ∗14] exist, but are not immediately

Preprinted version, see dl.acm.org for the final version)

2 Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching

applicable to the re-sampling of shape matching constraints. In this
work we propose a method that locally inserts and deletes shape-
matching clusters based on simple deformation criteria, allowing
essentially unbounded deformation. Our method is compatible with
any shape-matching-based simulator.

We also address the problem of rendering the resulting simulation.
The output of shape matching algorithm is a set of affine transfor-
mations that are often used to drive linear blend skinning [BM82],
[MTLT88] of an attached visual mesh. This is a simple and effi-
cient method that works well for materials where deformation is
small, and topological changes are not present. Our goal, however,
is to support large scale deformations and allow materials to tear
and fracture. In this work we use explicit mesh tracking [CM15]
to update the visual mesh topology, and describe a new skinning
algorithm that respects the changes to the underlying simulation.

Our main contributions are:

1. A local resampling scheme for particles and shape matching
clusters.

2. An improved skinning method for the explicitly tracked surface
mesh.

2. Related Work

Position based dynamics (PBD) [MHR06], which formulates con-
strained dynamics directly in terms of positions, has become a
popular method for real-time simulation. It has been extended to
multi-resolution representations [Mül08], the simulation of elas-
tic rods [USS14], fluids [MM13], smoke, and granular materi-
als [MMCK14]. A comprehensive survey on other recent devel-
opments of PBD can be found in [BMM15].

Müller et al. [MHT05] introduced shape matching for simulating
deformable solids. The best fit transformations of the current par-
ticles configuration are used to define goal positions that particles
are pulled towards. The method was later optimized with fast sum-
mation by Rivers and James [RJ07] to improve computation speed
when the particles lie on a lattice. Later, Steinemann et al. [SOG08]
extended the fast summation approach to handle adaptive lattices.
To improve the stability of shape matching when used with an ex-
plicit integrator Bargteil and Jones [BJ14] proposed to apply strain
limiting. Choi [Cho14] devised a strain measure in the context
of shape matching and use it for simulating plastic deformation
and ductile fracture. To give artists additional control over mate-
rial behavior Jones et al. [JML∗15] proposed the use of clusters
with weights. They also devised a plasticity and fracture model for
shape matching [JML∗16] inspired by the finite element simula-
tion of [BWHT07]. While extensions to the basic shape matching
method exist for the simulation of fracture, mesh cutting and mod-
erate plastic deformations, handling very large plastic deformations
in the context of shape matching has not been addressed so far.

Solids undergoing plastic deformation have also been simulated
with other methods. The finite element method is among the
post popular methods used in computer graphics. O’Brien et al.
[OBH02] used FEM for the simulation of ductile fracture. Later,
Bargteil et al. [BWHT07] extended the constitutive model to handle
large plastic flow. Wojtan et al. [WT08] addressed the problem of

handling thin features often occuring under large plastic deforma-
tions. They also proposed a method to handle topological changes,
an additional problem that arises when objects undergo large plas-
tic deformations [WTGT09]. Instead of augmenting Lagrangian
models to handle plastic flow, Goktekin et al. [GBO04] extended
the Eulerian fluid simulator approach to handle viscoelastic solids
which was later extended to the case of multiple interacting liq-
uids [LSSF06]. Stomakhin et al. [SSC∗13] found that the material
point method (MPM) which alternates between a Lagrangian and
an Eulerian representation is well suited for the simulation of snow
with its unique and distinctive behaviour including melting and so-
lidifying [SSJ∗14]. Ram et al. [RGJ∗15] proposed an alternative
MPM formulation to handle plastic flow in foams and sponges.

Particle based models are particularly well suited for the simula-
tion of large plastic deformations because handling thin features,
topological changes and volume conservation is straight forward.
Müller et al. [MKN∗04] formulated a continuum-based model on
particles by computing the deformation gradient from the parti-
cle locations with Moving Least Square (MLS) and were able to
simulate solids undergoing plastic deformation. This approach was
later extended to handle ductile fracture in [PKA∗05]. Kaiser et
al. [KAG∗05] developed a unified approach to handle the transition
from solid to fluid. Instead of using a continuum based method,
Clavet et al. [CBP05] modeled viscoelastic fluids with a mass-
spring system where springs are inserted and removed dynamically.
The smoothed particles hydrodynamics method (SPH), mostly used
for liquids, has also been extended to handle plastic solids. Solen-
thaler et al. [SSP07] proposed using SPH for the unified modeling
fluids, deformable solids, and rigid bodies. To reduce the compu-
tation time considerably, Peer et al. [PICT15] devised an implicit
viscosity term for SPH that requires only a single projection step.
Hieber and Koumoutsakos [HK08] proposed a Lagrangian particle
method for simulating elasto-plastic solids that do not store a rest
configuration, but instead perform a least square fit to the defor-
mation gradient at each step. To robustly derive the deformation
gradient from points Gerszewski et al. [GBB09] combine affine
transformations that best approximate local motions. The method
does not store the rest configuration and hence can only handle
limited elastic deformations. Jones et al. [JWJ∗14] proposes the
use of an embedded space, in addition to the rest space and the
world space for simulating elasto-plastic solids. A common prob-
lem of particle based approaches is that the deformation gradient
is not unique in sparse regions which yields numerical instabili-
ties. A popular method to circumvent this problem is to additionally
store orientation information on the particles [MKB∗10], [MC11]
and [FGBP11].

There is a large body of work on particle re-sampling. Here we
only list work that is closely related to our approach. Schechter and
Bridson [SB12] adapted the Fast Poisson Disk Sampling [Bri07]
method for evenly sampling a fluid domain with fluid and ghost
particles. Similarly, Ando et al. [ATT12] re-sample FLIP [ZB05]
particles in thin fluid regions to better preserve thin sheets. In their
hybrid model, Chentanez et al. [CM15] used Fast Poisson Disk
sampling for generating particles when the grid representation of
the liquid is converted to particles. Instead of complete re-sampling
Adams et al. [APKG07] proposed to split and merge existing parti-
cles to speed up SPH - based fluid simulation. Jones et al. [JWJ∗14]

Preprinted version, see dl.acm.org for the final version)

Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching 3

perform particle splits and merges to improve stability of their
point-based solid simulation. Our particle re-sampling strategy uti-
lizes the Fast Poisson Disk Sampling idea.

For rendering, we skin a surface to the particles. This area has
been researched exensively too. Of the most popular appoaches
are linear blend skinning [BM82], [MTLT88], multi-weight en-
veloping [WP02], animation space [MMG06], and dual quaternion
[KCvO08] skinning. An excellent resource containing the state-of-
the art methods can be found in the course note by Jacobson et
al. [JDKL14].

3. The Method

We represent objects by a set of particles and an explicit surface
mesh. Our simulation method comprises three main steps. At every
time step the states of the particles are first advanced by simulating
elastic and plastic deformation. After this, the explicit surface is ad-
vected with the particles via skinning and topological changes are
handled if necessary. Finally, the object is re-sampled with parti-
cles and the clusters are updated. We will now describe these steps
in more detail.

3.1. Simulating Elastic and Plastic Deformation

We use clustered shape matching [MHT05] as a constraint in a par-
allel position based dynamics constraint solver [MMCK14] and
handle plastic deformation with the method proposed by Choi
[Cho14]. Other plastic deformation models such as that of Jones
et al. [JML∗16] could be used as well.

More specifically, we discretize solid objects using a set of parti-
cles, pi ∈ P, with masses, mi, positions, pi and velocities vi. To
advance the simulation by a time step ∆t, we first apply exter-
nal forces to the velocities via vi ← vi +∆t fext(xi) and use these
updated velocities to compute predicted positions x∗i ← xi +∆tvi.
The constraint solver then performs a number of projection itera-
tions on the predicted positions. In each iteration all positional con-
straints are projected in parallel. The correction vectors from differ-
ent constraints are accumulated in a variable ∆xi for each particle.
These variables are used to update x∗i ← x∗i +∆xi/ni, where ni is the
number of constraints affecting particle i. After a given number of
solver iterations the velocities are updated via vi← 1

∆t (x
∗
i −xi) and

xi ← x∗i . For more details on each step and for contact handling,
see [MMCK14].

We use clustered shape matching to hold the particles together.
Clusters are overlapping sub-sets of the particles. Let C be the set
of particles in a cluster, FP the plastic deformation matrix, which
is initialized to identity, and let qi be the local position of particle i
with respect to the cluster’s center of mass which we denote by c.
Following the shape matching approach, we first compute

Apq = (∑
i∈C

mi(pi− c)qT
i)F

T
P , (1)

Aqq = FP(∑
i∈C

miqiqT
i)F

T
P , (2)

and use polar decomposition ApqA−1
qq = RSpqqq to extract the ro-

tational part of the matched linear transformation from the rest to

the current pose. The goal position of particle i is then computed as
gi =RFPqi+c. We update ∆xi←∆xi+K(gi−xi), where 0≤K ≤ 1
is the stiffness of the cluster.

To update FP, we use the plastic deformation model by Choi
[Cho14]. First, we diagonalize Aqq to get

Aqq =Vqqdiag(λqq
1 ,λ

qq
2 ,λ

qq
3)V T

qq. (3)

(4)

We then compute the optimal stretch matrix S using:

S =Vqq[(V T
qqSpqVqq)◦ Λ̄

qq]V T
qq, (5)

where Λ̄
qq
i j = 2/(λqq

i +λ
qq
j) and ◦ is the Hadamard product which

produces the element-wise multiplcation of its operands. Next, we
decompose S = V ΛV T , where Λ = diag(λ1,λ2,λ3). We then use
the logarithmic strain, εl =V log(Λ)V T for our strain measure and
use a multiplicative plasticity model as in [ITF04]. The plastic de-
formation FP can then be updated as

FP←V (|Λ|−
1
3 Λ)γV T FP, (6)

where γ = min(υ(||εl ||−εγ)
||εl || ,1) indicates how much of the elastic de-

formation is transferred to the plastic component, υ is the plastic
flow rate, and ||εl || = maxi(| log(λi)|). If work hardening is de-
sired, the plastic yield, εγ, is updated by εγ ← κ||εl ||∆t, where κ

is a coefficient controling the amount of plastic hardening.

To improve stability, in the case of violent interaction, we clamp the
diagonal entries of the diagonal matrix (|Λ|−

1
3 Λ)γ to be between

0.8 to 1.2, which roughly prevents Fp from changing more than
20% in a single time step.

3.2. Visual Mesh Skinning

We skin the visual mesh to the moving particles using a two-
step process. First, we interpolate the orientation, R, of each shape
matching cluster to particles. This is done by using the normalized
average of the quaternions of the clusters influencing each parti-
cle, which is the best fit rotation in a geodesic distance measure
[Gra01]. Let the normalized average quarternion of particle i be Qi.
Each visual mesh vertex stores particle indices la, local positions
za and weights wa, where 1 <= a <= 4. The position of the vi-
sual mesh vertex, y, is then computed as y = ∑

4
a=1 wa(QM

la za +xla),
where QM

la denotes the rotation matrix corresponding to the quater-
nion Qla . We do not directly skin the visual mesh to the clusters
because particles contain positional detail that clusters cannot rep-
resent. Since particles do not store orientation needed for skinning
we interpolate it from the clusters.

After the new vertex positions are determined, we resolve topo-
logical changes and ensure good triangle quality with the method
proposed by [CMMK15]. During this step, we delete visual mesh
vertices for which there is no particle within a distance of 2r. This
can potentially cause a topological split.

3.3. Re-Sampling

The re-sampling step comprises a series of sub-steps. First, invalid
particles are removed and new particles seeded in under-sampled

Preprinted version, see dl.acm.org for the final version)

4 Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching

regions within the visual mesh. Second, the current clusters are up-
dated, invalid clusters are removed and new clusters added if nec-
essary. Finally, the skinning weights of the visual mesh vertices are
adjusted and the mesh updated. We now describe the details of each
step.

3.3.1. Remove Invalid Particles

As the simulation proceeds, some particles may get too close to
others or may move far outside the visual mesh. These particles
no longer contribute significantly to the simulation. Hence, we flag
particles for deletion when one or both of the following conditions
are true: (a) A particle’s index is smaller than the index of its closest
neighbor and the distance to the closest neighbor is less than ηr,
where r is the particle radius and η is a small constant. We use
η = 0.1 in all our examples. (b) A particle is outside the inflated
visual mesh and is not referenced by any vertex of the visual mesh
for skinning. The inflated visual mesh has the same topology as the
visual mesh but with vertices displaced along their normals by a
small amount. We use 0.25r in all our examples. For mesh inside-
outside tests we use ray casting.

3.3.2. Seed New Particles

Due to plastic deformation during the simulation, particles may
move far apart and create under-sampled regions. To avoid this, we
perform local re-sampling by attempting to seed T particles around
each particle belonging to a significantly deformed cluster. We use
T = 5 for all examples. A cluster is considered significantly de-
formed if the Frobenius norm of its plastic deformation matrix FP
exceeds a threshold (1.8 in our examples). The candidate positions
are generated by uniformly sampling the space between two con-
centric spheres of radius r and 2r [Bri07]. If a candidate position
is farther than r from its nearest particle, lies within the inflated vi-
sual mesh and is not inside other scene geometry, we seed a particle
there with the same physical quantities as the source particle.

3.3.3. Update Clusters

As particles are deleted and added, we need to update clusters to
reflect these changes. For each cluster C we remove referenced
deleted particles and add all newly created particles xi for which
||xi− c|| < rC, where c the cluster’s center of mass and rC its un-
deformed radius. The local position, qi, of an added particle i is
computed as qi = W (xi − c), where W is the transformation ma-
trix from world space to the plastically deformed local space of the
cluster. W is computed as W = F−1

P AqqA−1
pq .

If a cluster changes during this step, we need to shift the local po-
sitions of the particles so that the local center of mass is at the
origin. We first compute the center of mass using the rest positions
of the particles c̄ = ∑i∈C miqi

∑i∈C mi
. Then we update the local positions by

qi← qi− c̄.

3.3.4. Remove Invalid Clusters

During the simulation, clusters may have a lot of particles added
or removed, may undergo large plastic deformation or may over-
lap significantly with other clusters. When this happens the clus-
ters may no longer faithfully capture the underlying deformation

field and need to be re-sampled. We achieve this by simply remov-
ing such clusters. When conditions are appropriate, the removal
will trigger the creation of new clusters to be added and hence we
achieve re-sampling.

A cluster is removed if

• it has fewer than half the initial number of particles or

• it has more particles than twice the initial number of particles or

• the Frobeinius norm of its plastic deformation matrix FP exceeds
a threshold (2.0 in our examples) or

• all of its particles are members of more than Mmax other clusters.

3.3.5. Add New Clusters

When clusters are removed, their member particles will have fewer
clusters influencing them and newly created particles are not influ-
enced by any cluster. In this case we have to add new clusters. First
we create a list Lcand of the particles referenced by less than Mmin
clusters. We then select a random particle from Lcand, append its in-
dex to a list, Lcen, and mark all particles in Lcand within radius rG

from it, where rG ≤ rC is the radius for creating clusters. We repeat
this selection step until all the particles in Lcand are marked.

We then create one cluster for each particle in Lcen containing all the
particles within distance rC. The plastic deformation matrix, FP, of
the new cluster is set to identity. We embed the plastic deformation
information directly into the local positions of the member parti-
cles, by setting qi←Wnew(xi− c), where Wnew is interpolated from
old clusters, including the ones that got deleted in this time step.

We use a method similar to the one proposed by Bargteil et al.
[BWHT07] for interpolating Wnew. First, we compute U = W−1 =

ApqA−1
qq F−1

P of all the old clusters and G = UT U−I
2 . After this

we interpolate Gnew by using a weighted average of G of the
old clusters, where the weights are proportional to the overlap-
ping volume of the spheres with radius rC centering at the clus-
ters. We then diagonalize 2Gnew + I =VnewDnewV T

new, where Dnew =
diag(λnew

1 ,λnew
2 ,λnew

3) and Vnew is a rotation matrix. For added sta-
bility, we clamp λnew

1 ,λnew
2 ,λnew

3 to be between 0.25 and 4. We then
compute Wnew = V T

newdiag(1√
λ

new
1

, 1√
λ

new
2

, 1√
λ

new
3

)Vnew. The plastic

yield εγ is also interpolated using the same weights.

The cluster generation described above is executed once per time
step. Therefore, it potentially could take up to Mmin time steps for
a particle get included in Mmin clusters. In practice however, newly
generate particles are always close to some existing clusters and get
included into them right away.

3.3.6. Update visual mesh and the skinning weights as needed

When particles get deleted or change their clusters membership, the
skinning indices, skinning weights, and skinning local positions of
the visual vertices need to be updated. First, particle orientations,
Qi, have to be interpolated from clusters again because they are
no longer valid if particles change their cluster membership. Then
for each visual vertex, we check if its skinning indices, la, refer to
particles that got deleted. If so, we let la reference the four closest
particles and set the skinning weights, wa, in proportion to their

Preprinted version, see dl.acm.org for the final version)

Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching 5

inverse distance. These skinning weights are normalized to sum to
1. We re-compute the skinning locations za = Q−1

la
(y− xla) only

when needed, namely, when la changes or when Qla changes due
to re-sampling.

In some examples, we also utilize a volume conservation strategy
similar to Thuerey et al. [TWGT10] which moves visual mesh ver-
tices along their normal by an amount proportion to the difference
between a target volume and the current volume divided by the cur-
rent surface area. This is done independently for each connected
component of the visual mesh. While this step could be repeated
until the volume differs from the target volume by no more than ε,
we found it sufficient in our situation to only do it once per time
step. If a visual vertex is moved by this process, we need to re-
compute its local skinning position, za, as above. As the movement
tends to be very small, we found that re-computing skinning indices
and weights is not necessary in this case.

3.3.7. Handling multiple connected components

During simulation, an object could be split into several components
due to tearing, user manipulation or other mechanisms. Unless par-
ticles move far apart very quickly in a single time step, the method
described so far tends to prevent splitting because clusters tend to
form between particles that should belong to different components.

We address this problem by first identifying the connected com-
ponents of the visual mesh. Each vertex of the visual mesh stores
the ID of the connected component it belongs to. We use the skin-
ning indices to propagate these IDs to the particles. If a particle
is referenced by vertices from different components, we create an
identical particle with a small positional offset for each component.
The ID information is then propagated inward to the particles far
away from surface in a breadth-first search fashion. After this we
check for each cluster whether all referenced particles belong to the
same component. If this is not the case we simply mark the cluster
for deletion. The steps above are done before invalid particles are
removed.

The particle removal step is modified to only consider the distance
to the closest particle within the same component ID. A newly cre-
ated particle in the particle seeding step gets its ID from the source
particle. The cluster update step is modified so that only particles
with the same component ID are included. The cluster creation step
now only creates new clusters from particles with the same compo-
nent ID, and interpolates information from the old clusters that have
the same component ID. Finally, when we compute the skinning in-
dices of a visual vertex, we consider only the particle with the same
component ID as the vertex.

When different components of the visual mesh merge, they get the
same component ID and the particles from previously separated
components will now be able to form a cluster. When a user cut
is performed, we simply cut the visual mesh into different com-
ponents by deleting all triangles that cross the cut plane and then
mark the vertices involved to not contribute to pairing score during
the entire pairing step of [CMMK15].

4. Results and Discussion

We wrote a GPU implemented our algorithm. Our un-optimized
prototype runs in real-time or at interactive rates on a single
NVIDIA GTX TitanX in all examples including simulation, sur-
face tracking, re-sampling and rendering. We use r = 0.1, rG = 3r,
and rC = 4r in all examples, where our objects have size between
20r to 100r. The animations can be found in one of our accom-
panying videos. Snapshots of an animation of the armadillo being
shot in various locations are shown in Figure 1. Figure 2 shows an
armadillo shaped solid being dropped on the ground with various
flow rates and plastic yield thresholds yielding a variety of behav-
iors. Figure 3 demonstrates different behaviors for various harden-
ing coefficients. Figure 4 shows snapshots of a bunny shaped solid
being pulled and shot.

Snapshots of an animation of a cow shaped mesh being caught be-
tween moving bars is shown in Figure 5. A taffy pulling machine is
simulated as shown in Figure 6. These examples demonstrate that
our re-sampling method holds up under very large plastic flow.

We also simulate dough being squeezed, rolled over and split as
shown in Figure 7. The dough is manipulated by hands in real-time
via a hand tracking device Figure 8.

Without our resampling step, the simulation will either become un-
stable, if Fs is not clamped, or not be able to undergo large defor-
mation, if Fs is clamped. The simulation also would not be able to
undergo topological change. These situations are demonstrated in
one of our accompanying videos.

The timings and statistics for the examples are shown in Table 1.
The surface mesh topological change and triangle mesh quality im-
provement usually dominate the running time, as we use a relatively
high resolution surface mesh compared to the particle density. Our
re-sampling method takes a significant amount of time in the par-
ticle deletion and addition steps due to ray casting for inside / out-
side tests whose execution time depends strongly on the resolution
of the surface mesh. The ray casting function alone is responsi-
ble for about 60% of the re-sampling running time. Nonetheless,
the overall frame rate is still real-time or interactive. Depending on
how large the plastic deformation is, the percentage of the particles
that we consider seeding new particles nearby range from 15% on
average for the bunny to 80% on average for the cow cutting ex-
ample. We use the volume conservation strategy in the bunny, the
taffy pulling machine and the dough examples.

5. Conclusion and Discussion

We presented the first shape-matching-based solid simulation that
can handle very large plastic deformation through the use of par-
ticle and cluster re-sampling. Our method affects only the shape
matching constraints in the context of a unified particle physics
simulation [MMCK14]. This allows the solid to interact with liq-
uids, gases, rigid bodies and other types of particles in the frame-
work.

We do not attempt to conserve the total mass of the objects in this
work. We argue that conserving the volume of the visual mesh,
which is what the end-user sees, is sufficient in many practical use

Preprinted version, see dl.acm.org for the final version)

6 Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching

Figure 2: Final frame of a real-time simulation of an armadillo
shaped solid dropped onto the ground with various flow rates and
plastic yield thresholds. The top row simulations use εγ = 10−4,
while the bottom row simulations use εγ = 10−2. From the leftmost
column to the rightmost column, υ used are 0.1,0.2,0.5, and 0.9
respectively. All examples use κ = 0, K = 0.9.

Figure 3: Final frame of a real-time simulation of an armadillo
shaped solid dropped onto the ground with various work hardening
coefficients. From the leftmost column to the rightmost column, the
κ used are 0,0.1,1, and 5. All examples use initial εγ = 10−4, υ =
0.9, and K = 0.9.

cases. Moreover, as we keep good particle distributions during sim-
ulations, the total mass is approximately conserved anyway.

To treat multiple objects, different component IDs can be assigned
to each of them. If the topological change and ray-casting steps are
carried out for each of them independently, the different objects
never merge. We do not explicitly handle cluster splitting due to
fracture in our implementation, but it can be added using either
methods by Choi [Cho14] or Jones et al. [JML∗16].

While our method is described within the context of shape match-
ing constraints and the PBD framework, we believe it can be read-
ily adapted to pure shape matching simulation used in Bargteil and
Jones [BJ14], Jones et al. [JML∗15], Jones et al. [JML∗16].

Ray casting to determine if a point is inside the surface mesh is
by far the most significant bottleneck of our re-sampling method.
We actually do not need the inside-outside information to be 100%
precise. A method that determines the inside-outside information
only approximately could be employed to improve the running time
of our re-sampling greatly.

Currently, our method may create clusters with particles belonging
to the same connected component of the visual mesh within radius
rC.

Our method of working with component IDs does not prevent a
complicated single component from merging if it folds over itself
within a radius of rC. We do not find this to be problematic in our
examples. This is because particles that are about to merge tend to
have their relative velocity approaching each other anyway and usu-
ally cause the visual mesh to merge. To prevent this type of merge
one could use the geodesic distance along overlapping particles in-
stead of a Euclidean distance measure to decide whether particles

are to be included in a cluster. We view this as an interesting future
work.

References
[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.: Adap-

tively sampled particle fluids. ACM Trans. Graph. 26, 3 (July 2007). 1,
2

[ATT12] ANDO R., THUREY N., TSURUNO R.: Preserving fluid sheets
with adaptively sampled anisotropic particles. Visualization and Com-
puter Graphics, IEEE Transactions on 18, 8 (Aug 2012), 1202–1214. 1,
2

[BJ14] BARGTEIL A. W., JONES B.: Strain limiting for clustered shape
matching. In Proceedings of the Seventh International Conference on
Motion in Games (New York, NY, USA, 2014), MIG ’14, ACM, pp. 177–
179. 2, 6

[BM82] BADLER R., MORRIS M.: Modelling flexible articulated ob-
jects. In Computer Graphics’ 82 (1982). 2, 3

[BMM15] BENDER J., MÜLLER M., MACKLIN M.: Position-based
simulation methods in computer graphics. EUROGRAPHICS Tutorial
Notes, Zürich, May 4-8 (2015). 2

[Bri07] BRIDSON R.: Fast poisson disk sampling in arbitrary dimen-
sions. In ACM SIGGRAPH 2007 Sketches (New York, NY, USA, 2007),
SIGGRAPH ’07, ACM. 2, 4

[BWHT07] BARGTEIL A. W., WOJTAN C., HODGINS J. K., TURK G.:
A finite element method for animating large viscoplastic flow. ACM
Transactions on Graphics 26, 3 (July 2007), 16:1–16:8. 2, 4

[CBP05] CLAVET S., BEAUDOIN P., POULIN P.: Particle-based vis-
coelastic fluid simulation. Proceedings of the ACM SIGGRAPH Sym-
posium on Computer Animation (2005), 219–228. 2

[Cho14] CHOI M. G.: Real-time simulation of ductile fracture with ori-
ented particles. Computer Animation and Virtual Worlds 25, 3-4 (2014),
455–463. 1, 2, 3, 6

[CM15] CHENTANEZ N., MULLER M.: Coupling 3d eulerian, height-
field and particle methods for interactive simulation of large scale liquid
phenomena. Visualization and Computer Graphics, IEEE Transactions
on 21, 10 (Oct 2015), 1116–1128. 2

[CMMK15] CHENTANEZ N., MÜLLER M., MACKLIN M., KIM T.-Y.:
Fast grid-free surface tracking. ACM Trans. Graph. 34, 4 (July 2015),
148:1–148:11. 3, 5

[FGBP11] FAURE F., GILLES B., BOUSQUET G., PAI D. K.: Sparse
Meshless Models of Complex Deformable Solids. ACM Transactions on
Graphics 30, 4 (July 2011), Article No. 73. 2

[GBB09] GERSZEWSKI D., BHATTACHARYA H., BARGTEIL A. W.: A
point-based method for animating elastoplastic solids. In Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (New York, NY, USA, 2009), SCA ’09, ACM, pp. 133–138.
2

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.: A
method for animating viscoelastic fluids. ACM Transactions on Graph-
ics 23, 3 (Aug. 2004), 463–467. 2

[Gra01] GRAMKOW C.: On averaging rotations. Int. J. Comput. Vision
42, 1-2 (Apr. 2001), 7–16. 3

[HK08] HIEBER S. E., KOUMOUTSAKOS P.: A lagrangian particle
method for the simulation of linear and nonlinear elastic models of soft
tissue. Journal of Computational Physics 227, 21 (2008), 9195 – 9215.
Special Issue Celebrating Tony LeonardâĂŹs 70th Birthday. 2

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite elements
for robust simulation of large deformation. In Proceedings of the ACM
SIGGRAPH Symposium on Computer Animation (2004), pp. 131–140. 3

[JDKL14] JACOBSON A., DENG Z., KAVAN L., LEWIS J.: Skin-
ning: Real-time shape deformation. In ACM SIGGRAPH 2014 Courses
(2014). 3

Preprinted version, see dl.acm.org for the final version)

Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching 7

Figure 4: Snapshot from an a real-time simulation of a bunny shaped solid being pulled and shot in various places. εγ = 0.1, υ = 0.9, κ = 0
and K = 0.1.

Figure 5: Snapshot from an animation of a cow shaped solid being caught between several moving rigid bars. εγ = 10−4, υ = 0.99, κ = 0
and K = 0.5.

Figure 6: Snapshot from an animation of a taffy pulling machine simulation. εγ = 10−4, υ = 0.99, κ = 0 and K = 0.99.

Preprinted version, see dl.acm.org for the final version)

8 Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching

Figure 7: Snapshot from a real-time simulation of dough being squeezed, rolled, and folded over. εγ = 0.1, υ = 0.9, κ = 0 and K = 0.1.

Figure 8: Snapshot from a real-time simulation of dough being manipulated by hands via a hand tracking device. εγ = 0.1, υ = 0.9, κ = 0
and K = 0.5.

Sim Topo Resampling Total Par %Seed Clus Par/Clus Tris MaxE
BH PD PA CS SK Oth RTotal

Armadillo 2.61 12.37 0.20 2.77 5.78 0.76 1.09 0.32 10.92 25.90 11707 38.7 697 71 60k 0.017
Bunny 4.77 18.87 0.15 3.15 3.99 0.88 1.37 0.40 9.94 33.58 37883 16.5 1387 127 36k 0.017
Cow 1.76 26.05 1.16 1.87 6.81 0.51 1.09 0.37 11.81 39.62 4452 80.0 394 56 239k 0.04
Taffy 2.33 34.99 1.63 0.77 7.79 0.69 3.67 0.47 15.02 52.34 6188 65.5 512 95 342k 0.04

Dough 2.12 7.38 0.19 0.57 4.32 0.54 1.41 0.30 7.33 16.83 7073 50.1 335 108 46k 0.01

Table 1: Average timings in millisecond and statistics of the examples. Each row corresponds to the average over several runs similar to the
situations shown in the video. Sim is the simulation time, Topo is the surface mesh topological change and improvement time, Resampling
is our resampling method’s time, Total is total time for simulation+surface tracking+resampling, Par is the number of particles, %Seed is
the percentage of particles being considered for seeding additional particles nearby, Clus is the number of clusters, Par/Clus is the average
number of particles per cluster, Tris is the number of triangles of the surface mesh and MaxE is the maximum edge length for surface tracking
(the minimum edge is one tenth of the maximum edge length). BH is the building hash table for ray-casting time, PD is the particle deletion
time, PA is the particle addition time, CS is the cluster resampling time(update,delete,add), SK is the skinning time (compute indices, weight
and local position updates), Oth is for the time it takes for the remaining of the resampling steps and RTotal is the total time for the resampling
step.

[JML∗15] JONES B., MARTIN A., LEVINE J. A., SHINAR T.,
BARGTEIL A. W.: Clustering and collision detection for clustered shape
matching. In Proceedings of the 8th ACM SIGGRAPH Conference on
Motion in Games (New York, NY, USA, 2015), MIG ’15, ACM, pp. 199–
204. 2, 6

[JML∗16] JONES B., MARTIN A., LEVINE J. A., SHINAR T.,
BARGTEIL A. W.: Ductile fracture for clustered shape matching. In Pro-
ceedings of the ACM SIGGRAPH symposium on Interactive 3D graphics
and games (Feb 2016). 1, 2, 3, 6

[JWJ∗14] JONES B., WARD S., JALLEPALLI A., PERENIA J.,
BARGTEIL A. W.: Deformation embedding for point-based elastoplastic
simulation. ACM Trans. Graph. 33, 2 (Apr. 2014), 21:1–21:9. 1, 2

[KAG∗05] KEISER R., ADAMS B., GASSER D., BAZZI P., DUTRÉ P.,
GROSS M.: A unified lagrangian approach to solid-fluid animation. In
Proceedings of the Second Eurographics / IEEE VGTC Conference on
Point-Based Graphics (Aire-la-Ville, Switzerland, Switzerland, 2005),
SPBG’05, Eurographics Association, pp. 125–133. 2

[KCvO08] KAVAN L., COLLINS S., ŽÁRA J., O’SULLIVAN C.: Geo-
metric skinning with approximate dual quaternion blending. ACM Trans.
Graph. 27, 4 (Nov. 2008), 105:1–105:23. 3

[LSSF06] LOSASSO F., SHINAR T., SELLE A., FEDKIW R.: Multiple
interacting liquids. In the Proceedings of ACM SIGGRAPH 2006 (Aug.
2006), pp. 812–819. 2

[MC11] MÜLLER M., CHENTANEZ N.: Solid simulation with oriented
particles. ACM Trans. Graph. 30, 4 (July 2011), 92:1–92:10. 2

[MHR06] MÜLLER M., HENNIX B. H. M., RATCLIFF J.: Position based
dynamics. Proceedings of Virtual Reality Interactions and Physical Sim-
ulations (2006), 71–80. 2

[MHT05] MÜLLER M., HEIDELBERGER B., TESCHNER M.: Mesh-
less deformations based on shape matching. In Proc. SIGGRAPH 2005
(2005), pp. 471–478. 1, 2, 3

[MKB∗10] MARTIN S., KAUFMANN P., BOTSCH M., GRINSPUN E.,

Preprinted version, see dl.acm.org for the final version)

Nuttapong Chentanez & Matthias Müller & Miles Macklin / Real-time Simulation of Large Elasto-Plastic Deformationwith Shape Matching 9

GROSS M.: Unified simulation of elastic rods, shells, and solids. ACM
Trans. on Graphics (Proc. SIGGRAPH) 29, 3 (2010), 39:1–39:10. 2

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M., GROSS
M., ALEXA M.: Point based animation of elastic, plastic and melting
objects. In the ACM SIGGRAPH 2004 Symposium on Computer Anima-
tion (July 2004), pp. 141–151. 2

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans.
Graph. 32, 4 (July 2013), 104:1–104:12. 2

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM T.-Y.:
Unified particle physics for real-time applications. ACM Trans. Graph.
33, 4 (July 2014), 153:1–153:12. 2, 3, 5

[MMG06] MERRY B., MARAIS P., GAIN J.: Animation space: A truly
linear framework for character animation. ACM Trans. Graph. 25, 4
(Oct. 2006), 1400–1423. 3

[MTLT88] MAGNENAT-THALMANN N., LAPERRIÈRE R., THALMANN
D.: Joint-dependent local deformations for hand animation and ob-
ject grasping. In Proceedings on Graphics Interface ’88 (Toronto,
Ont., Canada, Canada, 1988), Canadian Information Processing Society,
pp. 26–33. 2, 3

[Mül08] MÜLLER M.: Hierarchical position based dynamics. Proceed-
ings of Virtual Reality Interactions and Physical Simulations (2008). 2

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.: Graphical
modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3
(July 2002), 291–294. 2

[PICT15] PEER A., IHMSEN M., CORNELIS J., TESCHNER M.: An
implicit viscosity formulation for sph fluids. ACM Trans. Graph. 34, 4
(July 2015), 114:1–114:10. 2

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P., GROSS M.,
GUIBAS L. J.: Meshless animation of fracturing solids. ACM Trans.
Graph. 24, 3 (July 2005), 957–964. 2

[RGJ∗15] RAM D., GAST T., JIANG C., SCHROEDER C., STOMAKHIN
A., TERAN J., KAVEHPOUR P.: A material point method for viscoelas-
tic fluids, foams and sponges. In Proceedings of the 14th ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation (New York,
NY, USA, 2015), SCA ’15, ACM, pp. 157–163. 2

[RJ07] RIVERS A. R., JAMES D. L.: Fastlsm: Fast lattice shape match-
ing for robust real-time deformation. In ACM Transactions on Graphics
(Proc. SIGGRAPH 2007) (2007), vol. 26(3), pp. 82:1–82:6. 2

[SB12] SCHECHTER H., BRIDSON R.: Ghost sph for animating water.
ACM Trans. Graph. 31, 4 (July 2012), 61:1–61:8. 1, 2

[SOG08] STEINEMANN D., OTADUY M. A., GROSS M.: Fast adap-
tive shape matching deformations. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2008), SCA ’08, Eurographics Associa-
tion, pp. 87–94. 2

[SSC∗13] STOMAKHIN A., SCHROEDER C., CHAI L., TERAN J.,
SELLE A.: A material point method for snow simulation. ACM Trans.
Graph. 32, 4 (July 2013), 102:1–102:10. 2

[SSJ∗14] STOMAKHIN A., SCHROEDER C., JIANG C., CHAI L.,
TERAN J., SELLE A.: Augmented mpm for phase-change and varied
materials. ACM Trans. Graph. 33, 4 (July 2014), 138:1–138:11. 2

[SSP07] SOLENTHALER B., SCHLÄFLI J., PAJAROLA R.: A unified par-
ticle model for fluid–solid interactions: Research articles. Com-
put. Animat. Virtual Worlds 18, 1 (Feb. 2007), 69–82. 2

[TWGT10] THUEREY N., WOJTAN C., GROSS M., TURK G.: A Mul-
tiscale Approach to Mesh-based Surface Tension Flows. ACM Transac-
tions on Graphics (SIGGRAPH) 29 (4) (July 2010), 10. 5

[USS14] UMETANI N., SCHMIDT R., STAM J.: Position-based elastic
rods. In ACM SIGGRAPH 2014 Talks (New York, NY, USA, 2014),
SIGGRAPH ’14, ACM, pp. 47:1–47:1. 2

[WP02] WANG X. C., PHILLIPS C.: Multi-weight enveloping: Least-
squares approximation techniques for skin animation. In Proceedings

of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (New York, NY, USA, 2002), SCA ’02, ACM, pp. 129–138.
3

[WT08] WOJTAN C., TURK G.: Fast viscoelastic behavior with thin fea-
tures. ACM Transactions on Graphics 27, 3 (Aug. 2008), 47:1–47:8.
2

[WTGT09] WOJTAN C., THÜREY N., GROSS M., TURK G.: Deforming
meshes that split and merge. ACM Trans. Graph. 28, 3 (July 2009), 76:1–
76:10. 2

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. In the Pro-
ceedings of ACM SIGGRAPH 2005 (Aug. 2005), pp. 965–972. 2

Preprinted version, see dl.acm.org for the final version)

