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Abstract

We present a simple yet powerful approach for the generation and rendering of surfaces defined by the boundary
of a three-dimensional point cloud. First, a depth map plus internal and external silhouettes of the surface are
generated in screen space. These are used to construct a 2D screen space triangle mesh with a new technique that is
derived from Marching Squares. The resulting mesh is transformed back to 3D world space for the computation of
occlusions, reflections, refraction, and other shading effects. One of the main applications for screen space meshes
is the visualization of Lagrangian, particle-based fluids models. Our new method has several advantages over the
full 3D Marching Cubes approach. The algorithm only generates surface where it is visible, view-dependent level
of detail comes for free, and interesting visual effects are possible by filtering in screen space.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism Animation and Virtual Reality

1. Introduction

The Marching Cubes method [LC87] is the most popular
technique for generating triangle meshes along iso-surfaces
of scalar fields. One important application is the reconstruc-
tion of the liquid-air interface in fluid simulations. In Eule-
rian fluid simulations, the liquid surface is often represented
as the zero level set of the scalar level set function which is
advected by the velocity field of the fluid [FF01, EMF02].
The Marching Cubes technique is then used to construct
a triangle mesh along the zero level set. In Lagrangian,
particle-based approaches [GM77, MCG03, PTB∗03], the
liquid surface is typically defined as an iso-surface of a den-
sity field which is the superposition of radially symmetric
kernel functions of the individual particles [Bli82]. Again, a
triangle mesh is generated using the Marching Cubes algo-
rithm.

Although Marching Cubes is certainly the most popular
and useful algorithm to generate 3D triangle meshes for
iso-surfaces of scalar fields, there are some disadvantages
when used for the visualization of surfaces of liquids. First,
since the standard approach is camera-independent, many
invisible triangles and surface details are generated. Second,
the algorithm operates in three dimensions although what is

sought is the front 2D surface. This surface is to be found by
marching through a 3D data set.

Off-line tracking of the free surface of liquids is a well
understood problem with a large body of work. However,
the authors are not aware of any methods for rendering the
full 3D air-liquid interface that is fast enough for the use in
games. Our method closes this gap. It is significantly faster
than previous methods. It does, however, only render the
front most layer of the surface. This is not a limitation for
opaque liquids like milk or oil and in most use cases with
transparent fluids, especially in connection with fake refrac-
tion shaders, the artifacts are minimal as our examples show.
The advantages of the new screen space mesh approach are

• The screen space mesh resolves parts of the surface which
are close to the camera with more triangles than distant
parts, yielding camera-dependent level of detail.

• Since it operates in two dimensions, a method derived
from Marching Squares can be employed which is sub-
stantially faster than the 3D Marching Cubes algorithm.

• In contrast to other screen space approaches such as ray-
tracing or point splatting, fast standard triangle shading
hardware can be used for state-of-the-art forward shading
of the surface and occlusion culling since the mesh can
easily be transformed back into world space.
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Figure 1: Left: Final rendering. Middle: The screen space mesh. Right: Rotated view of the mesh to show its dependence on the
viewing direction.

• With a mesh defined in screen space, the smoothing of
depths and silhouettes can easily be separated and con-
trolled individually.

2. Related Work

Our approach is a screen space technique. Many render-
ing algorithms operate primarily in screen space. The most
prominent among these is raytracing [Whi80]. For each
pixel, a ray is cast into the scene which is then traced along
reflected and refracted directions yielding view-dependent
level of detail. The array of pixels could be interpreted as
a high-resolution regular grid in screen space which is pro-
jected back into world space. However, in contrast to screen
space meshes, ray tracing cannot directly make use of the tri-
angle rendering pipeline of modern graphics hardware. Also,
the resolution must always match the pixel resolution while
the resolution of screen space meshes is adjustable to the
time budget for surface rendering.

The projected grid concept introduced recently by Johan-
son et al. [Joh04] is more closely related to screen space
meshes. It is based on earlier work on real-time ocean ren-
dering [HNC02]. While the projected grid is designed to ren-
der unbounded water surfaces represented by height fields,
screen space meshes can be used to render arbitrary three-
dimensional (fluid) surfaces. Because the water surface is
considered unbound in [Joh04], a projected grid is sufficient.
No connectivity is generated in screen space and, thus, no
silhouettes can be represented.

Since we present screen space meshes as a method to
render the surface of point-sampled volumes, the approach
is also related to point splatting methods [ZPvBG01]. The
generation of the depth map is similar to a point splatting
step while the rest of our algorithm deviates completely from
point splatting.

3. Basic Algorithm

We expect as input a set of 3D points x1, . . .xN ∈ R3 (in
our case the locations of a set of particles simulated with

Smoothed Particles Hydrodynamics), the projection matrix
P ∈ R4×4, and a set of parameters as shown in Table 1.

The basic steps of the algorithm are:

1. Setup regular depth map
2. Find internal and external silhouettes
3. Smooth depth values
4. Generate a 2D triangle mesh using our Marching Squares

related procedure
5. Smooth silhouettes
6. Transform mesh back into world space
7. Render the 3D triangle mesh

These steps are executed whenever the points change their
locations or the camera moves. Steps 3. and 5. are explained
in Section 4 as they are extensions to the basic method.

Parameter Description Range

h screen spacing 1−10
r particle size ≥ 1
nfilter filter size for depth smoothing 0−10
niters silhouette smoothing iterations 0−10
zmax depth connection threshold > rz

Table 1: Summary of parameters.

3.1. Depth Map Setup

Let W and H be the width and height of the screen in pixels.
One of the input parameters of the method is the screen spac-
ing h ∈ R which does not need to be an integer. The spacing
defines a regular grid of cell size h with Nx = dW

h e+1 nodes
horizontally and Ny = dH

h e+ 1 nodes vertically. The depth
map Z ∈ RNx×Ny stores depth values zi, j at each node of the
regular grid. It is generated from scratch at the beginning of
each frame.

First the depth values zi, j are initialized with ∞. Then, the
algorithm iterates through all N particles twice. In the first
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Figure 2: Left: Side view of depth map generated by three
particles. Only front most hits are considered. Large z-
differences of adjacent depth values indicate inner and outer
silhouettes. Right: Between adjacent nodes at most one ad-
ditional node (white dot) is stored to indicate the silhouette.

phase, the depth values are set. In the second phase, addi-
tional depth values are generated where silhouettes cut the
grid (see Fig. 2). In both phases, the coordinates and radius
of each particle have to be transferred from world to screen
space. This is done as follows:

Let x = [x,y,z,1]T be the homogenous coordinates of the
particle considered. These coordinates are transformed using
the projection matrix P to get

x′

y′

z′

w

 = P


x
y
z
1

 . (1)

We assume the setup of the projection matrix to be de-
fined as in OpenGL and DirectX. In that case, perspective
division (i.e. division of x′,y′ and z′ by w) yields canonical
coordinates in the range −1 . . .1 for all three coordinates.
However, we perform perspective division only on x′ and
y′ but not on the depth z′ because the depth would get dis-
torted non-linearly by this transformation. We compute the
projected coordinates as

 xp
yp
zp

 =

 W · ( 1
2 + 1

2 x′/w)
H · ( 1

2 + 1
2 y′/w)

z′

 . (2)

This way, we have xp ∈ [0 . . .W ], yp ∈ [0 . . .H] while zp is
the non-distorted distance to the camera. Another parameter
of our method is the particle size r. For the projected radii
we get

 rx
ry
rz

 =


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r
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3,3

 , (3)

where the pi, j are the entries of the projection matrix P. This
equation only holds at the center of the screen. For a wide

field of view the particles get distorted far from the cen-
ter, an effect we ignore here since it only affects the shape,
not the location of the particle. In OpenGL and DirectX√

p2
3,1 + p2

3,2 + p2
3,3 = 1 so rz = r and zp is the distance to

the camera. We assume that the aspect ratio of the projection
is chosen according to the viewport (i.e. W/H). In this case
we have a single projected radius rp = rx = ry in the screen
plane and the particles appear as circles rather than ellipses.

In the first phase, for each particle, all depth values at (i, j)
with (ih− xp)2 +( jh− yp)2 ≤ r2

p are updated as

zi, j←min
(
zi, j, zp− rzhi, j

)
, (4)

(5)

where hi, j =
√

1− (ih−xp)2+( jh−yp)2

r2
p

. Omitting the square

root in hi, j produces an upside down parabola instead of a
spherical surface. This version is faster to compute and suf-
ficient in most cases. The reader might want to experiment
with other kernels too. At the end of the first phase, the depth
map of the point cloud is coarsely sampled at the grid nodes.
Similar to Marching Squares we insert additional nodes on
the grid edges connecting nodes with large depth differences
in order to track the silhouette in more detail as described in
the next section (see also Fig. 2 right).

3.2. Silhouette Detection

zmax>

silhouette edge

Figure 3: Left: Top view of the grid. The depth differences
at the ends of bold segments are above zmax, i.e. they are cut
by one or more silhouettes. Right: Side view. The lower two
particles generate two different cuts on the edge. Taking the
cut (white point) furthest from the end with the smaller depth
value (left most in this case) removes this ambiguity.

For the detection of silhouettes, the algorithm iterates
through the particles a second time. In this phase, only grid
edges which connect depth values that are further apart then
zmax are considered (see Fig. 3). We call them silhouette
edges. The goal of the algorithm is to find one additional
node (a silhouette node) on each silhouette edge. Each sil-
houette node is located between the adjacent nodes of its
silhouette edge and stores the depth value of the front layer.
For each particle p all cuts of the circle at position (xp,yp)
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and radius rp in screen space with silhouette edges are com-
puted. Each cut is a silhouette node candidate. Its location
is the location of the cut and its depth is the depth zp of the
particle. However, this point is only stored if two conditions
hold:

• The depth zp of the particle is smaller than the average
depth of the silhouette edge, i.e. belongs to the front layer.
This criterion can be used as an early out to avoid com-
puting the cut point.

• The location of the cut on the silhouette edge is further
from the endpoint with the smaller depth value than a po-
tential silhouette node previously stored for this edge. In
that case the new node replaces the old one (see Fig. 3
right).

3.3. Mesh Generation

The next step is to generate the vertices and triangles of the
screen space mesh. Each grid node with an initialized depth
value ( 6= ∞) generates one vertex at its location with the same
depth value. Each silhouette edge with only one initialized
adjacent node generates one additional silhouette vertex at
the location and with the depth of its silhouette node. This
vertex will be on the outer silhouette. Each silhouette edge
with both adjacent nodes initialized generates two vertices,
both at the location of the silhouette node. One vertex asso-
ciated with the end point with the smaller depth (the front
vertex) gets the depth of the silhouette node. The other ver-
tex (the back vertex) gets a depth value extrapolated from the
neighborhood of endpoint with the larger depth value. These
two nodes lie on an inner silhouette (see Fig. 4). In this fig-
ure linear extrapolation is used to find the depth of the back
silhouette vertex which we found to be sufficient.

silhouette edge silhouette edge

back silhouette vertex

front silhouette vertex

1 1

2
2

3 3

Figure 4: Side view of the grid. Left: Silhouette node created
on a silhouette edge. Right: The mesh vertices and triangles
generated for this configuration. Note that two vertices with
different depth values are generated for the silhouette node.

To generate triangles, the mesh generation algorithm vis-
its all grid cells one by one and generates triangles for them.
Each of the cell’s edges is either a silhouette edge or a reg-
ular edge. This leads to 16 cases as shown in Fig. 5. The
number of a particular case can be computed by associating
each edge with a bit and set the bit to one if the edge is cut,
i.e. has a silhouette node.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Figure 5: All the cases for the generation of a 2D triangle
mesh from cut edges.

In Fig. 5 we have opened the cuts on each edge for illus-
tration purposes to distinguish the silhouettes vertex associ-
ated with the left and the one associated with the right end
node. From the triangles shown, only those are generated for
which all three vertices exist. In the case of outer silhouettes
only a subset of the triangles need to be added. Special care
has to be taken for different groups of cases:

• Case 0 represents inner triangles away from silhouettes.
We alternate between the configuration shown and the one
which is rotated 90 degrees to get a nicer inner mesh.

• Cases 3,5,6,9,10 and 12 are the regular situations with
the silhouette entering at one edge and leaving at another.
No special care has to be taken here.

• Cases 1,2,4 and 8 are generated by an inner silhouette
starting within the cell. The triangulation shown is not
unique. To avoid flickering it is important to stick with
one arbitrary choice though. The difference of the depth
of the two silhouette vertices is bound by 3zmax. There-
fore, it is safe to connect the vertices as shown without
generating arbitrarily stretched triangles.

• The remaining cases 7,11,13,14 and 15 are the patholog-
ical ones. Have a closer look at case 7. The center triangle
is connected to the left two triangles. It is, thus, connected
to the same layer as those. The upper right and lower right
triangles each belong to different layers which can be arbi-
trarily far from the layer of the center triangle. Therefore a
third vertex needs to be generated for the silhouette node
on the right. Its depth needs to be extrapolated from the
depths of the four vertices on the left. In case 15 two ad-
ditional vertices are generated and connected to the layer
of the lower left triangle.

3.4. Transformation to World Space and Rendering

At this stage, we have a triangle mesh with the correct con-
nectivity and vertices in screen space, e.g. with coordinates
[xp,yp,zp]T . In order to render this mesh and to compute re-
flections and refractions of the 3D environment, the vertices
are projected back into world space while the connectivity is
kept fixed. We, therefore, need to invert the transformation
given in Eq. (1) and Eq. (2). Let Q ∈ R4×4 be the inverse of
the projection matrix, i.e. Q = P−1. With Q, the world coor-
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dinates [x,y,z]T can be computed via the inverse projection
equation


x
y
z
1

 = Q


(−1+2xp/W )w
(−1+2yp/H)w
zp
w

 . (6)

At this point, we do not have the projective divisor w.
However, it can be retrieved (using the last row of the above
equation) as

w =
1−q4,3zp

q4,1(−1+2xp/W )+q4,2(−1+2yp/H)+q4,4
(7)

from known quantities only, before the inverse transforma-
tion is executed.

After the transformation of the mesh, we generate per-
vertex normals in world space. There are several ways to
compute vertex normals for a triangle mesh. We use the nor-
malized sum of the normals of adjacent triangles weighted
by the adjacent angles. Finally the triangles and normals are
sent to the standard graphics pipeline.

4. Extensions

4.1. Depth Smoothing

The procedure described so far produces bumpy depth maps.
Fortunately, the depth map can easily be smoothed by apply-
ing an appropriate filter. We use a separable binomial filter
of user specified half-size nfilter (see Fig. 6), both, in i and j
direction.

1
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6
/64

15
/64

20
/64

15
/64

6
/64

1
/64

n
Filter

ii-1i-2i-3 i+1 i+2 i+3

Figure 6: Separable binomial filter with half-length nfilter =
3. The center depth value at (i, j) is replaced by the weighted
sum of neighboring depth values. The weights used are
shown inside the squares.

In a first pass, the horizontal filter is applied to all values
zi, j 6= ∞ of the depth map. In a second pass the values zi, j 6= ∞

are filtered again using the vertical version of the filter.

When applying the filter, special care has to be taken near
silhouettes. When the filter is applied to a certain node, we
only consider depth values within the zmax range from the
depth of the node. However, with this procedure the bound-
ary of the mesh can get tilted towards the camera as Fig. 7
shows. This happens because the symmetry of the filter is

∞

∞

Figure 7: If certain depth values are not considered for fil-
tering, the mesh gets tilted towards the camera.

Figure 8: Top: The standard approach produces bumpy sur-
faces. Bottom: A flat surface is generated by smoothing the
depths in screen space.

lost and the central value is pulled towards the values on the
valid side of the filter. This problem can be solved easily.
If the value at position i + k is omitted, both position i + k
and position i− k are ignored in the weighted sum. When
the depth of a node is changed, the depths of the silhouette
nodes associated with it are changed by the same amount.

4.2. Silhouette Smoothing

Smoothing of the depth values does not influence the appear-
ance of the silhouettes of the mesh. To smooth the bound-
ary of the mesh we smooth the screen space coordinates
[xp,yp]T of the nodes of the mesh before the transforma-
tion to world space. We use a very simple but effective iter-
ative scheme. In each iteration, the screen space coordinates
of each vertex are replaced by the average of its own co-
ordinates and the coordinates of all adjacent vertices. The
regular internal mesh resulting from case 0 in Fig. 5 and its
flipped configuration is a fix point of this smoothing proce-
dure. Thus, it only affects the silhouettes as desired. To avoid
the opening of internal silhouettes corresponding silhouette
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vertices are "glued" together in screen space during this pro-
cess. The number of iterations niters is a user parameter. Sil-
houette smoothing causes shrinking of outer silhouettes. In
most cases this effect is desired. In order to cover the area
of a puddle the fluid particles have to have a certain size.
When small groups of particles separate, the drops appear as
rather large blobs. Silhouette smoothing makes the boundary
of small sets of connected particles look more realistic (see
Fig. 11).

5. Results

All scenes were run on a Intel dual core CPU at 2.6GHz with
2GB of RAM. In most cases the SPH simulation was the
bottleneck. The car wash scene (Fig. 1) contains 16K SPH
particles. It runs at 20 fps without surface generation. The
frame rate drops to 19 fps for screen spacing h = 6 and to 18
fps for screen spacing h = 3 with a triangle count of 13K and
40K respectively. The dungeon scene (Fig. 11) contains 10K
particles. Its frame rate drops from 23 fps to 22 for h = 6 with
15K triangles and to 21 fps for h = 3 with 60K triangles.

In both the slide scene (Fig. 9) and the wheels scene
(Fig. 10) the particle count of 5K is small with respect to
the number of triangles generated. Since 5K SPH particles
can be simulated very efficiently – 65 fps in the slide scene
– the time for the generation for the screen space mesh be-
comes more significant. For h = 6 the frame rate drops to 55
fps with 5 K triangles and to 40 fps for h = 3 to 40 fps with
a triangle count of 20 K.

6. Conclusions and Future Work

Screen space meshes provide an efficient way to construct
and visualize surfaces. We focused on the visualization of
particle-based fluids. However, the approach is more general
and can be applied to other related visualization problems.

The approach trades speed for certain limitations. The 3D
mesh generated from the screen space mesh is only valid
for the current camera position. This causes problems with
shadow casting. A solution to this problem would be to gen-
erate the fluid mesh separately from the positions of the light
sources. Also, only the front most surface layer is generated
which does not produce visible artifacts in most scenarios as
already mentioned.

Most of the algorithm steps, such as the depth map gen-
eration or the transformation of vertex positions, are well-
suited to be computed on a GPU. We expect a GPU imple-
mentation to be much faster than the CPU version we have,
although the CPU version already allows the generation of
quite complex surfaces in real-time as our results show.
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Figure 9: Left: The original set of particles (their SPH density is color coded). Middle: Screen space mesh. Right: Final
rendering.

Figure 10: Left: A scene with a complex 3D liquid boundary. Middle: The screen space mesh with internal silhouettes. Left: A
rotation of the frozen mesh reveals that the internal silhouettes are disconnected in the viewing direction as desired.

Figure 11: Left: Flooding a corridor. Middle: Top view of the screen space mesh without silhouette smoothing. Right: Silhouette
smoothing generates a surface tension effect.
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