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Abstract

We present a multigrid method for solving the linear complementarity problem (LCP) resulting from discretizing
the Poisson equation subject to separating solid boundary conditions in an Eulerian liquid simulation’s pressure
projection step. The method requires only a few small changes to a multigrid solver for linear systems. Our
generalized solver is fast enough to handle 3D liquid simulations with separating boundary conditions in practical
domain sizes. Previous methods could only handle relatively small 2D domains in reasonable time because they
used expensive quadratic programming (QP) solvers. We demonstrate our technique in several practical scenarios
in which the omission of separating boundary conditions results in disturbing artifacts of liquid sticking to walls.
d

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling, Physically Based Modeling—Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism, Animation—Simulation and Modeling [I.6.8]: Type of Simulation, Animation—

Keywords: natural phenomena, physically based animation, multigrid

1. Introduction

For many years grid based liquid simulation has been suc-
cessfully used in the computer graphics community to gen-
erate visual effects. One of the artifacts that researchers and
practitioners encounter is that of liquid artificially crawling
on walls and sticking to the ceiling [BBB07]. This liquid
behavior is caused by the fact that standard linear solvers re-
strict the normal velocity of the liquid at the solid boundary
to be zero. More precisely, in what follows we abbreviate
with the term normal velocity the component of the relative
liquid velocity in the direction normal to the solid surface
away from the solid at the solid boundary. In nature, the
phenomenon of liquids having zero normal velocity at solid
boundaries is indeed observed in which case they form a thin
film on walls and ceilings. However, in grid based simula-
tions, the thickness of the region influenced by the zero nor-
mal velocity at boundaries is of the order of the grid spacing.
This yields visual artifacts because the grid spacing used in
practical scenarios is usually much larger than the thickness
of the thin liquid film found in nature.

A more accurate boundary condition restricts the normal ve-

locity to be greater than or equal to zero instead of zero only,
at the solid boundary as described in [BBB07]. In this paper
we use the terms sticky (solid) boundary conditions and sep-
arating (solid) boundary conditions for the enforcement of
the normal velocity to be exactly zero and greater than or
equal to zero at the solid boundary, respectively. The main
reason that researchers in computer graphics have tolerated
the artifacts associated with sticky boundary conditions is
that the introduction of inequality constraints turns the lin-
ear system of the discretized Poisson equation into a Linear
Complementarity Problem (LCP) which is much more ex-
pensive to solve.

The only paper we found in the computer graphics literature
that addresses this problem is Batty et al. [BBB07]. They
use a PATH solver [FM98] which is based on Quadratic Pro-
gramming (QP). The computational complexity of the PATH
solver, however, limits the problem size to be only a small
2D domain. We propose to solve the LCP with a multigrid
method, which allows the simulation of substantially larger
problem sizes in 3D.

In summary, the main contributions of this work are:
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Figure 1: Left: Initial condition of water in a sphere. Middle: With standard solid boundary conditions, the liquid tends to
unnaturally stick to the spherical boundary. Right: Considering separating boundary conditions lets the liquid to peel off the
boundary easily.

1. A multigrid method for solving the Poisson equation
resulting from the variational framework introduced in
[BBB07] and [BB08].

2. A modification to allow the solution of the LCP result-
ing from enforcing separating solid boundary conditions,
which previously required an expensive QP solver.

2. Related Work

Foster and Metaxas [FM96] were the first in computer
graphics to simulate fluids by solving the Navier-Stokes
equations on a staggered grid [HW65]. They voxelized the
solids and enforced the proper boundary conditions between
fluid and solid cells. Later, Foster and Fedkiw [FF01] sim-
ulated liquids by tracking the surface with the Level Set
method. Numerical errors were reduced by the introduction
of Lagrangian particles. They handled solid coupling by ex-
plicitly setting normal velocities to zero at solid boundaries
and modified the pressure solver to not change these veloc-
ities. The method for handling solid boundaries was further
improved by Houston et al. [HBW03]. They proposed to
constrain the velocity extrapolated into the solid. Ramussen
et al. [REN∗04] extended this method to properly handle the
Level Set advection step. These methods work well when
solid boundaries have the restriction that they are aligned
with the grid faces. However, they fail in more general cases,
e.g. in the scenario of a liquid settling in a non-axis aligned
container. The reason is that the pressure solver only "sees"
the voxelized solid and therefore, cannot cancel out the grav-
ity force modified by these approaches. Batty et al. [BBB07]
introduced a variational framework to properly handle solid-
fluid coupling. They considered separating solid boundary
conditions with the result that liquids correctly peel off solid
walls in their simulations but at the price of requiring an ex-
pensive LCP solver. Narain et al. [NGL10] simulated gran-
ular materials using an Eulerian grid. Their formulation of
the pressure equation inside the material also results in an

LCP which they solve with an efficient Conjugate Gradient-
like QP solver presented in [DS05]. Our work attempts to
solve the LCP of Batty et al. [BBB07] more quickly using a
modified multigrid solver.

The multigrid method [McC87] has been used in various
fields in computer graphics. Shi et al. [SYBF06] solved the
Poisson equation for a deformation field with a multigrid
approach to simulate deformable objects. Other examples
in solid simulation are Zhu et al. [ZSTB10] who solved
the elasticity equations with a multigrid solver and Müller
[Mue08] who introduced hierarchical position based dynam-
ics.

In fluid simulation, Chentanez et al. [CFL∗07] used the al-
gebraic multigrid method to solve for the pressure field on a
tetrahedral mesh. Molemaker et al. [MCPN08] handled ob-
stacles with a multigrid solver using velocity projection. To
speed up the pressure solver Lentine et al. [LZF10] proposed
a simplified multigrid approach. They execute pressure pro-
jection on a coarse grid and multiple independent fine grids.
Aleka et al. [MST10] used a multigrid solver as a Conju-
gate Gradient preconditioner. More recently, Chentanez and
Müller [CM11] showed how to use the multigrid method di-
rectly for free-surface liquid simulations. It is their method
that we extend in this paper to handle separating solid bound-
ary conditions.

3. Methods

We simulate liquids by solving the inviscid Euler Equations,

∂u
∂t

= −(u ·∇)u+
f
ρ
− ∇p

ρ
(1)

with Dirichlet and Neumann boundary conditions, subject to
the incompressibility constraint

∇·u = 0, (2)
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where u is the fluid velocity field, p the pressure, t time,
ρ the fluid density and f the external forces. We solve these
equations in the region where the Level Set φ is non-positive.
φ is evolved by

∂φ

∂t
= −u ·∇φ. (3)

We discretize the simulation domain using a regular stag-
gered grid and the variational framework presented in
[BBB07] and [BB08] to allow for curved solid boundaries.
The x, y and z components of fluid velocity u = (u,v,w)
are stored at the center of the faces perpendicular to the
x, y and z axis respectively. The scalar pressure p and the
Level Set function φ are stored at the cell center. We use
us = (us,vs,ws) for the solid velocity and Vi, j,k for the frac-
tion of non-solid matter, i.e. fluid and air in cell (i, j,k). The
scalars Vi+ 1

2 , j,k
, Vi, j+ 1

2 ,k
, and Vi, j,k+ 1

2
represent the fraction

of non-solid matter in the overlapping cells along the x, y and
z axes respectively. While we follow Batty et al. [BBB07]
for time integration, we deviate from their approach by us-
ing our novel multigrid method for pressure projection.

3.1. Enforcing Incompressibility

We denote the velocity field before enforcing the divergence
free condition as u∗. Following the variational framework
in [BBB07], the pressure p that enforces the divergence free
constraint can be found by minimizing the kinematic energy
integrated over the liquid domain. We discretize the integra-
tion and set the derivative of the energy to zero, which yields
a linear system of p

L(p)i, j,k = D(u∗)i, j,k (4)

for all cells where φi+1,y,k < 0. The left hand side term
L(p)i, j,k is composed of the six components

li+, j,k + li−, j,k + li, j+,k + li, j−,k + li, j,k++ li, j,k−, (5)

where

li+, j,k =Vi+ 1
2 , j,k

(pi, j,k− pi+, j,k). (6)

The pressure values are

pi+, j,k =

{
pi, j,k

φi+1,y,k
φi, j,k

if φi+1,y,k ≥ 0

pi+1, j,k otherwise.
(7)

The values li−, j,k, li, j+,k, li, j−,k, li, j,k+ and li, j,k− are defined
similarly.

The right hand side is

D(u)i, j,k = dx(u)i, j,k +dy(u)i, j,k +dz(u)i, j,k, (8)

where the term dx(u)i, j,k is given by

1
∆x (Vi+ 1

2 , j,k
ui+ 1

2 , j,k
−Vi− 1

2 , j,k
ui− 1

2 , j,k
)+ (9)

(Vi+ 1
2 , j,k
−Vi, j,k)u

s
i+ 1

2 , j,k
− (Vi− 1

2 , j,k
−Vi, j,k)u

s
i− 1

2 , j,k
.(10)

The other terms dy(u)i, j,k and dz(u)i, j,k are defined simi-
larly. This formulation incorporates the ghost fluid method
[EF02] to enforce p = 0 at the liquid surface instead of the
cell center and the variational framework of [BBB07] to
achieve sub-grid accuracy. φ must be extrapolated to solid
cells that are one cell away from liquid cells so that they
are included as unknowns in the linear system. Moreover,
the solid velocity us also needs to be extrapolated to nearby
liquid faces.

The system is then subjected to the separating complemen-
tarity condition

0≤ p⊥ (u−vsolid) · n̂≥ 0. (11)

This condition states that either both p≥ 0 and (u−vsolid) ·
n̂ = 0 are true or both p = 0 and (u− vsolid) · n̂ ≥ 0 are
true. After p is determined it is used to make u divergence
free. Since the variational approach [BBB07] satisfies the
KarushŰKuhnŰTucker (KKT) conditions, we only need to
ensure p >= 0 to satisfy the complementariy conditions.
In [BBB07], a PATH solver [FM98] based on Quadratic
Programming (QP) is used to solve this problem at a high
computational cost which limits the method to be applied to
small 2D domains only.

We propose to solve the system efficiently with a novel
multigrid method. To show why a multigrid approach is
well suited for solving the linear complementarity problem
above, let us first write (4) in general matrix form without
the complementarity condition. For each cell we have

Ai, j,k
i, j,k pi, j,k +Ai+1, j,k

i, j,k pi+1, j,k +Ai−1, j,k
i, j,k pi−1, j,k + . . .= bi, j,k,

(12)
where the Ai, j,k’s are the matrix coefficients involving cell
(i, j,k). Solving for the unknown pressure at this cell yields

pi, j,k =
1

Ai, j,k
i, j,k

(bi, j,k −Ai+1, j,k
i, j,k pi+1, j,k −Ai+1, j,k

i, j,k pi+1, j,k − . . .). (13)

Such a linear system can be solved efficiently by global
methods like PCG. However, considering the complemen-
tarity condition (11) turns the simple equation (13) in each
boundary cell into

pi, j,k =max(0,
1

Ai, j,k
i, j,k

(bi, j,k−Ai+1, j,k
i, j,k pi+1, j,k−Ai+1, j,k

i, j,k pi+1, j,k− . . .)).

(14)
While the max operator prevents the system from being

solved by PCG, it can easily be solved with a Projected
Gauss-Seidel method by applying (14) iteratively. However,
projected Gauss-Seidel converges much more slowly than
global methods. Fortunately, there is a way to speed it up by
using it as the building block of a multigrid solver. The basic
idea behind our approach is therefore to replace the tradi-
tional Red-Black Gauss-Seidel (RGBS) iteration used in the
smoothing step of a multigrid solver with the Projected Red-
Black Gauss-Seidel (PRGBS) iteration.

Strictly speaking, the complementarity condition must be
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enforced precisely at the solid-liquid interface that, in gen-
eral, is not aligned with the cell boundary. To handle this
more general case correctly all the pressure values pi, j,k
around the interface have to be modified simultaneously to
satisfy the condition. To enforce this non-aligned comple-
mentarity condition we iterate through all edges that cross
the solid-liquid interface and check if the pressure at the in-
terface is less than zero. In that case, we adjust the end point
pressures to enforce zero pressure at the interface. The pres-
sure modifications are not unique so we choose the ones that
minimize the sum of the squared magnitude of the changes.

In practice, we found that the simpler method of enforcing
p≥ 0 at the center of solid cells next to liquid cells produces
results that are hardly distinguishable from results generated
with the more complicated method described above. Figure
2 and sequences in our accompanying videos show compar-
isons of the two methods. As the results show, the simpler
method yields convincing wall separation behavior even in
the presence of curved boundaries. Therefore, we will use
the simple approach in the remainder of our paper because it
simplifies the multigrid implementation considerably.

3.1.1. Multigrid Overview

The number of levels of the grid hierarchy we use is deter-
mined by M = log2 min(Bx,By,Bz), where Bx,By, and Bz are
the number of cells along x, y, and z axes respectively. The
finest level of the grid corresponds to the simulation grid
with ∆xM = ∆x.

Algorithm 1 summarizes our multigrid pressure solver. We
modified the solver presented in [CM11] to handle the dis-
cretization used in [BBB07] and introduced our new method
to handle separating solid boundary conditions.

Algorithm 1 Multigrid
1: for m = M−1 down to 1 do
2: Down sample φ

m+1→ φ
m and V m+1→V m

3: end for
4: for m = M down to 1 do
5: Extrapolate φ

m to solid cells that are one cell away
from liquid

6: Compute matrix Am for level m using Equation 4
7: end for
8: bM = D(u)
9: pM = 0

10: Compute pM
min

11: for i = 1 to num_Full_Cycles do
12: Full_Cycle()
13: end for
14: for i = 1 to num_V_Cycles do
15: V_Cycle(M)
16: end for

Each coarse grid is derived from the previous finer grid by
collapsing eight cells into one. At each level, a linear system

of the form Am pm = bm has to be solved. To down sample
V m+1 to V m we use 8-to-1 average:

V m
i, j,k =

1

8
(V m+1

2i,2 j,2k +V m+1
2i+1,2 j,2k +V m+1

2i,2 j+1,2k +V m+1
2i+1,2 j+1,2k + (15)

V m+1
2i,2 j,2k+1 +V m+1

2i+1,2 j,2k+1 +V m+1
2i,2 j+1,2k+1 +V m+1

2i+1,2 j+1,2k+1 , (16)

where i, j,k can be half indices for faces. If a required value
lies outside the simulation grid, the border value is used in-
stead.

To down sample φ
m+1 to φ

m we distinguish the following
two cases as in [CM11]:

1. If the 8 φ-values all have the same sign or m < M−C we
use the 8-to-1 average,

2. otherwise we use the average of the positive φ-values.

The key idea is to ensure that air bubbles persist in the C
finest levels. We set C = 2 in our simulations. Given all nec-
essary quantities, we then use Equation 4 to compute the
coefficients of the Am for each level.

For smoothing, we use the PRBGS method. We solve the
system in two parallel passes followed by a projection step to
enforce separating solid boundary conditions. The projection
step ensures that the pressure of each cell is greater than or
equal to

pM
mini, j,k =

{
0 if i, j,k is inside a solid
−∞ otherwise.

(17)

We use tri-linear interpolation for both the restriction and the
prolongation operators.

Algorithm 2 V_Cycle(m)
1: if m == 1 then
2: Solve the linear system, A1 p1 = b1

3: else
4: for i = 1 to num_Pre_Sweep do
5: Smooth(pm) and enforce pm

min (PRBGS)
6: end for
7: rm = bl−Apm

8: bm−1 = Restrict(rm)
9: pm−1 = 0

10: if m > M−S then
11: pm−1

min = DownsampleSubtract(pm
min, pm)

12: else
13: pm

min =−∞
14: end if
15: V_Cycle(m−1)
16: pm = pm +Prolong(pm−1)
17: for i = 1 to num_Post_Sweep do
18: Smooth (pm) and enforce pm

min (PRBGS)
19: end for
20: end if

The algorithms above are similar to the standard multigrid
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Algorithm 3 Full_Cycle()

1: ptmp = pM

2: Compute pM
min

3: pM
min−= pM

4: rM = bM−ApM

5: for m = M−1 down to 1 do
6: rm = Restrict(rm+1)
7: if m≥M−S then
8: pm

min = DownsampleSubtract(pm+1
min,0)

9: else
10: pm

min =−∞
11: end if
12: end for
13: b1 = r1

14: Solve the linear system, A1 p1 = b1

15: for m = 2 to M do
16: pm = Prolong(pm−1)
17: bm = rm

18: V_Cycle(m)
19: end for
20: pM = ptmp + pM

algorithms with the newly added steps involving the min-
imum pressure pM

min. The first modifications are made in
lines 5 and 18 of Algorithm 2. While smoothing, i.e. exe-
cuting Gauss-Seidel iterations, we enforce pm

min. More pre-
cisely, we set

pm
i, j,k = max(pm

i, j,k, pm
min i, j,k). (18)

This statement enforces the separating solid boundary condi-
tion. The second modifications are made on lines 11 and 8 in
Algorithms 2 and 3 respectively, where the function Down-
sampleSubtract is defined as

DownsampleSubtract(pm
min, pm)i, j,k= (19)

max
a,b,c∈{0,1}

(pm
min 2i+a,2 j+b,2k+c− pm

2i+a,2 j+b,2k+c). (20)

This essential step transfers the separating boundary con-
strains from fine to coarser grids taking the current pressure
estimate into account. The function is only executed on the
S finest levels because the separating boundary condition is
not meaningful in coarse levels. We use S = 3 in all of our
examples.

3.2. Surface Tracking

For our 3D examples, we track the liquid surface using the
particle based approach presented in [ZB05]. However, if a
grid based approach is used, φ must be carefully extrapolated
into solids for the method to work properly. For a solid cell
next to a liquid cell whose pressure is zero, φ should be set
to the positive distance to the solid surface, not the negative
value extrapolated from the liquid. This is similar to what is
proposed in [REN∗04] where the condition is based on the

normal relative velocity. Only with this modification does
the liquid peel-off freely from solids.

Case Res No LCP LCP % Diff
BallBox 643 19.00 21.26 11.89
DambreakBox 643 18.89 21.17 12.07
RotatedBox 1283 109.78 122.97 12.01
DambreakSphere 1283 109.67 122.58 11.77

Table 1: Average computation time for the multigrid solvers
in millisecond for various examples, running on an NVIDIA
GTX480. The solvers use 3 Full-Cycles followed by 4 V-
Cycles with num_Pre_Sweep = num_Post_Sweep = 4. The
column labeled with "Res" contains the grid resolutions
whereas columns "No LCP" and "LCP" show the timings
for the cases of sticky and separating solid boundary con-
ditions respectively. The relative difference between the run-
ning times are listed in the last column.

4. Results

We first performed a 2D test to compare the results between
1) not enforcing separating solid boundary conditions, 2) en-
forcing the conditions at node level and 3) enforcing them at
the edge level. Figure 2 shows the same frame for each case.
As can be seen in image b), enforcing standard boundary
conditions produces artifacts of liquid sticking to the sur-
rounding sphere. The node based and the edge based ap-
proaches do not show these artifacts and the visual results
are similar.

We also implemented a GPU accelerated 3D version of our
multigrid algorithm using CUDA and performed several fur-
ther tests: a dam break scene in a spherical container, in a
box rotated by 45 degree and in an axis aligned box. These
examples are shown in Figures 1, 3 and 4 respectively. Fig-
ure 5 shows a fourth scene in which a ball of liquid splashes
against the wall of a rectangular tank. In all tests we compare
the results between enforcing sticky and separating solid
boundary conditions at nodes. The artifact of water stick-
ing to the walls when using the sticky boundary conditions
is clearly visible in all cases.

To test the efficiency of our approach we compare the per-
formance of the LCP multigrid solver against a traditional
multigrid solver. For our tests we used an NVIDIA GTX480.
All timings are shown in Table 1. We found in all cases,
that the LCP solver is only about 12% slower than a stan-
dard solver. We did not directly compare the performance
of our solver with the performance of the PATH solver used
in [BBB07]. However, we expect our solver to be several
orders of magnitude faster. The reason is that our solver is
comparable in speed with the multigrid solver of [CM11],
which was reported to be up to 14 times faster than the pre-
conditioned Conjugate Gradients (PCG) method. PCG was
the solver Batty et al. [BBB07] used for their 3D examples
and pointed out that the PATH solver was too slow to be
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practical for 3D domains. Dostal et al. [DS05] proposed a
QP solver based on PCG. Due to the speedup we measured
against PCG, we expect our multigrid solver to be signifi-
cantly faster in this case as well especially for high resolu-
tion grids.

5. Conclusion and Future Work

In conclusion, we presented a novel multigrid method for
pressure projection handing separating solid boundary con-
ditions. We demonstrated the effectiveness of the algorithm
at eliminating the artifacts of water sticking to walls in sev-
eral practical scenarios. The main limitation of our method is
that it only supports one-way solid to fluid coupling. Extend-
ing it to work with two-way solid and fluid coupling, such as
by solving the linear system presented in [RMSG∗08] with
multigrid, might be challenging and is an interesting prob-
lem for future research.
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Figure 2: a) Initial condition of a ball of water in a circle moving diagonally to right and upwards. b) Sticky solid boundary
conditions. c) Separating solid boundary conditions enforced at the nodes. d) Separating solid boundary condition enforced on
the edges. Methods c) and d) produce similar visual results.

Figure 3: Left: Initial condition of water in a box rotated by 45 degrees. Middle: Sticky solid boundary conditions. Right:
Separating solid boundary conditions.

Figure 4: Left: Initial condition of water in a box. Middle: Sticky solid boundary condition. Right: Separating solid boundary
condition.

Figure 5: Left: Initial condition of a sphere of water in a box. The sphere is moving to the left. Middle: Sticky solid boundary
condition. Right: Separating solid boundary condition.
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