

A Multigrid Fluid Pressure Solver Handling Separating Solid Boundary Conditions

Nuttapong Chentanez

Matthias Müller

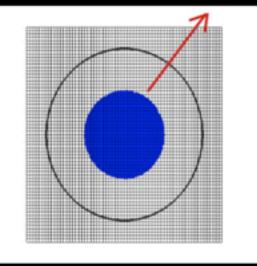
Monday, August 15, 2011

Main Contributions

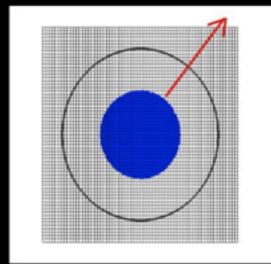
- Multigrid method for solving the weighted Poisson equations
 - From the variational framework for fluid simulation in Batty et al. 07 (BBB07), Batty and Bridson 08
- Modifications to solve LCP
 - To enforce separating solid boundary condition

Example

$$(\mathbf{u} - \mathbf{u}_s) \cdot \mathbf{n}_s = 0$$
 $(\mathbf{u} - \mathbf{u}_s) \cdot \mathbf{n}_s \ge 0$



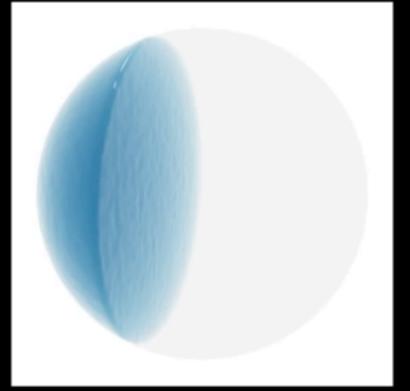
No wall separating boundary condition



With wall separating boundary condition (Node Base)

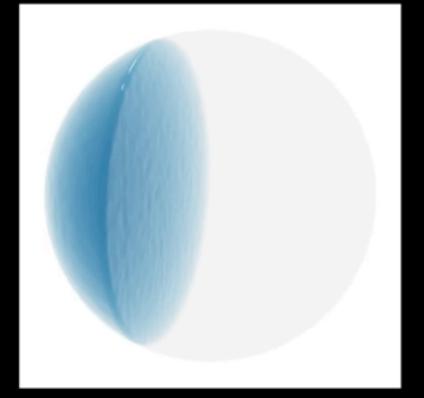
Example

$$(\mathbf{u}-\mathbf{u}_s)\cdot\mathbf{n}_s=0$$

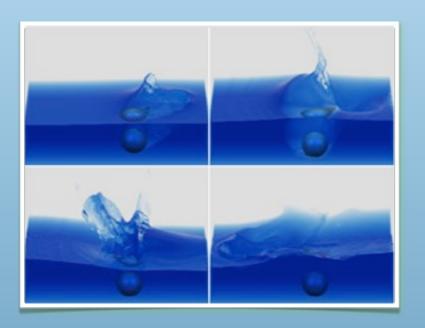


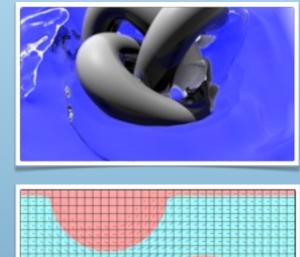
No wall separating boundary condition

 $(\mathbf{u} - \mathbf{u}_s) \cdot \mathbf{n}_s \ge 0$



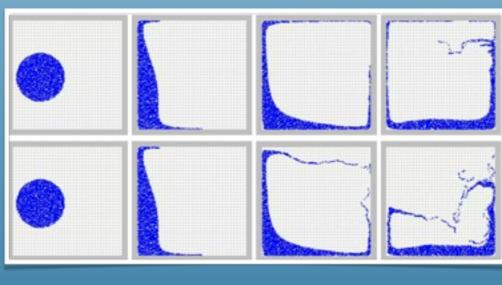
Background





Houston et al. 03

Rasmussen et al. 04



Monday, August 15, 2011

Method

Inviscid Incompressible Euler Equations

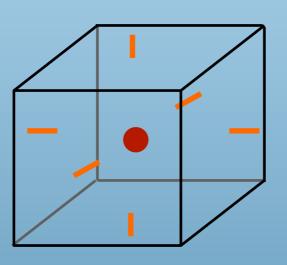
$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} + \frac{\mathbf{f}}{\rho} - \frac{\nabla p}{\rho}$$

- Subject to $\nabla \cdot \mathbf{u} = 0$
- Inside region $\phi < 0$,

$$\frac{\partial \phi}{\partial t} = -\mathbf{u} \cdot \nabla \phi$$

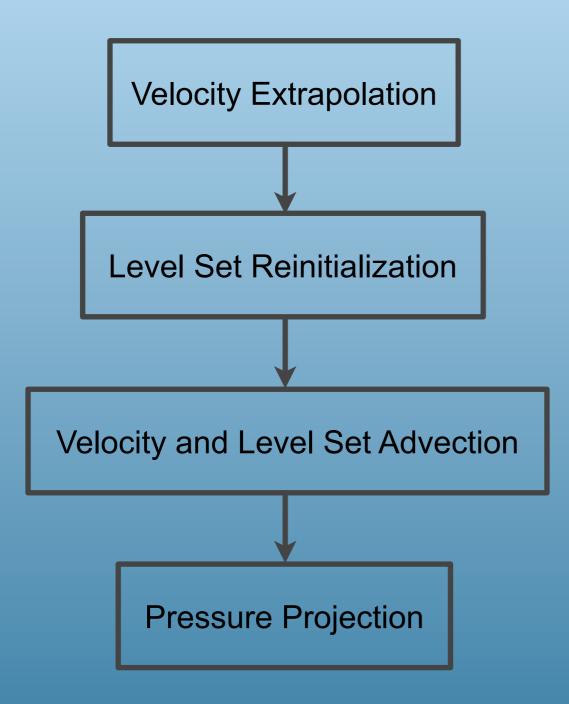
Method

Discretize to staggered grid as in BBB07



- Cell center
 - Pressure p, level set ϕ , solid fraction V
- Face center I /
 - Components of velocity $\boldsymbol{u} = [u, v, w]^{T}$
 - Face center solid fraction V_u, V_v, V_w

Method



- Time integration

 Standard grid based sim
- Novelty in pressure projection

Pressure Projection

- Let u* be the velocity field before pressure projection
- Then

$$\mathbf{u}^{n+1} = \mathbf{u}^* - \frac{\Delta t}{\rho} \nabla p$$

Pressure Projection

- Let u* be the velocity field before pressure projection
- Then $\mathbf{u}^{n+1} = \mathbf{u}^* \frac{\Delta t}{\rho} \nabla p$
- Kinematic energy of the liquid
 - Integrated over the liquid domain

$$\frac{1}{2}\int \mathbf{u}^{n+1}\cdot\mathbf{u}^{n+1}dV$$

Take solid fraction and free surface location into account

Pressure Projection

- Let u* be the velocity field before pressure projection
 - Then $\mathbf{u}^{n+1} = \mathbf{u}^* \frac{\Delta t}{\rho} \nabla p$
- Kinematic energy of the liquid
 - Integrated over the liquid domain

$$\frac{1}{2}\int \mathbf{u}^{n+1}\cdot\mathbf{u}^{n+1}dV$$

Take solid fraction and free surface location into account

- Pressure *p* found by minimizing the kinetic energy, BBB07
 - Automatically yields divergence free velocity field

Separating Solid Boundary Condition

Commonly used fluid solver enforces

$$(\mathbf{u}-\mathbf{u}_s)\cdot\mathbf{n}_s=0$$

- On the solid boundary
- Neumann boundary condition
- Yields linear system that must be solved for p
- For a static ceiling with u_s = 0,
 Liquid sticks unnaturally

Separating Solid Boundary Condition

BBB07 propose to enforce

 $(\mathbf{u} - \mathbf{u}_s) \cdot \mathbf{n}_s \ge 0$

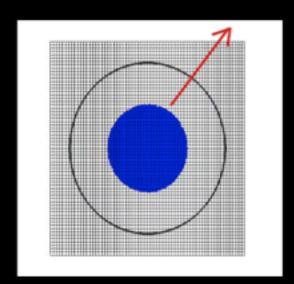
- If liquid separates from the solid then it becomes a free surface $\,p=0\,$
- Otherwise, p>0 disallowing suction

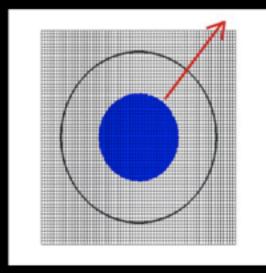
Hence

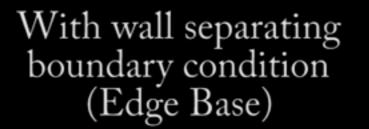
$$0 \le p \perp (\mathbf{u} - \mathbf{u}_s) \cdot \mathbf{n}_s$$

- Linear Complementarity Problem (LCP)
- Only need to enforce $p \ge 0$, BBB07

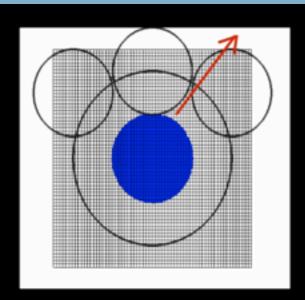
- We propose to use a multigrid solver for this
- Important observation
 - Don't need to enforce $p \geq 0$ exactly on solid surface
 - Just need to enforce at solid nodes next to liquid

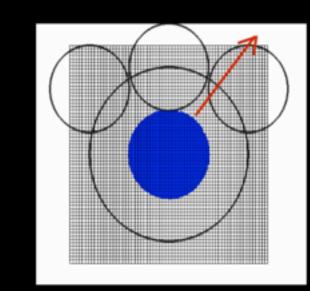






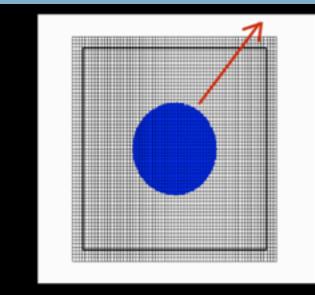
- We propose to use a multigrid solver for this
- Important observation
 - Don't need to enforce $p \geq 0$ exactly on solid surface
 - Just need to enforce at solid nodes next to liquid

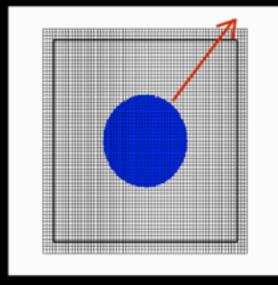




With wall separating boundary condition (Edge Base)

- We propose to use a multigrid solver for this
- Important observation
 - Don't need to enforce $p \geq 0$ exactly on solid surface
 - Just need to enforce at solid nodes next to liquid





With wall separating boundary condition (Edge Base)

- Adapt from MG Solver in Chentanez & Müller 11
- Idea
 - Replace Gauss Seidel with Projected Gauss Seidel

$$Ap = b$$

- Adapt from MG Solver in Chentanez & Müller 11
- Idea

- Replace Gauss Seidel with Projected Gauss Seidel

$$A_{i,j,k}^{i,j,k}p_{i,j,k} + A_{i,j,k}^{i+1,j,k}p_{i+1,j,k} + A_{i,j,k}^{i-1,j,k}p_{i-1,j,k} + \dots = b_{i,j,k}$$

- Adapt from MG Solver in Chentanez & Müller 11
- Idea

- Replace Gauss Seidel with Projected Gauss Seidel $p_{i,j,k} = \frac{1}{A_{i,j,k}^{i,j,k}} (b_{i,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - \ldots)$

- Adapt from MG Solver in Chentanez & Müller 11
- Idea

- Replace Gauss Seidel with Projected Gauss Seidel $p_{i,j,k} = \frac{1}{A_{i,j,k}^{i,j,k}} (b_{i,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - \dots)$

Gauss Seidel applies the above equation iteratively

- Adapt from MG Solver in Chentanez & Müller 11
- Idea

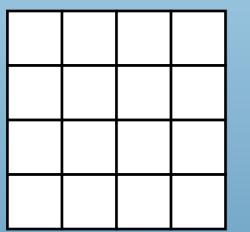
- Replace Gauss Seidel with Projected Gauss Seidel

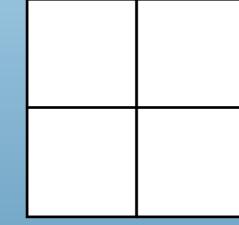
$$p_{i,j,k} = \max(p_{\min i,j,k}, \frac{1}{A_{i,j,k}^{i,j,k}}(b_{i,j,k} - A_{i,j,k}^{i+1,j,k}p_{i+1,j,k} - \ldots))$$

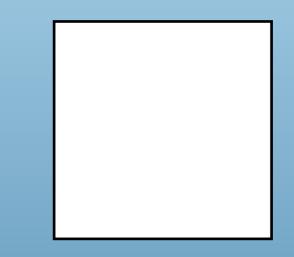
Projected Gauss Seidel applies the above equation iteratively, where

$$p_{\min i,j,k} = \begin{cases} 0 & \text{if i,j,k is inside a solid} \\ -\infty & \text{otherwise} \end{cases}$$

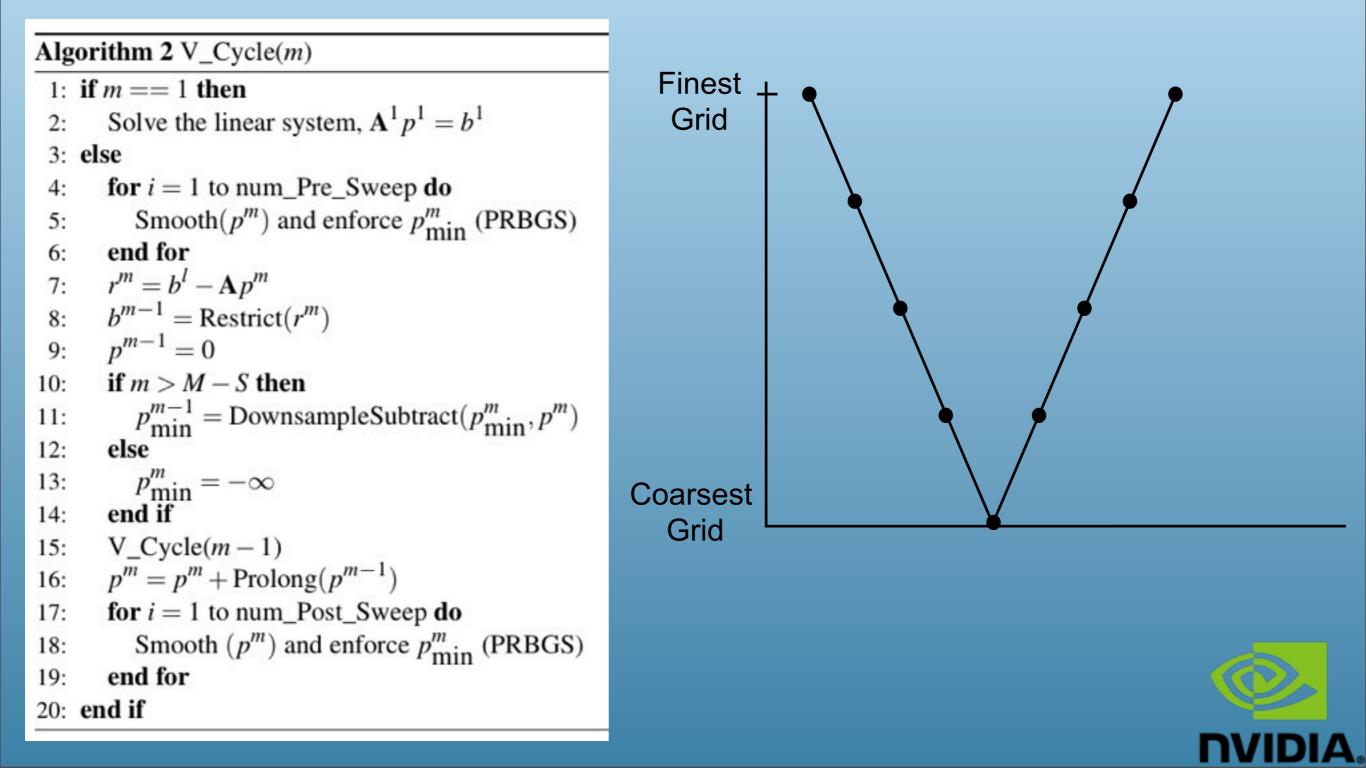
- Build hierarchy of grids
 - 8-to-1 down sampling (in 3D)

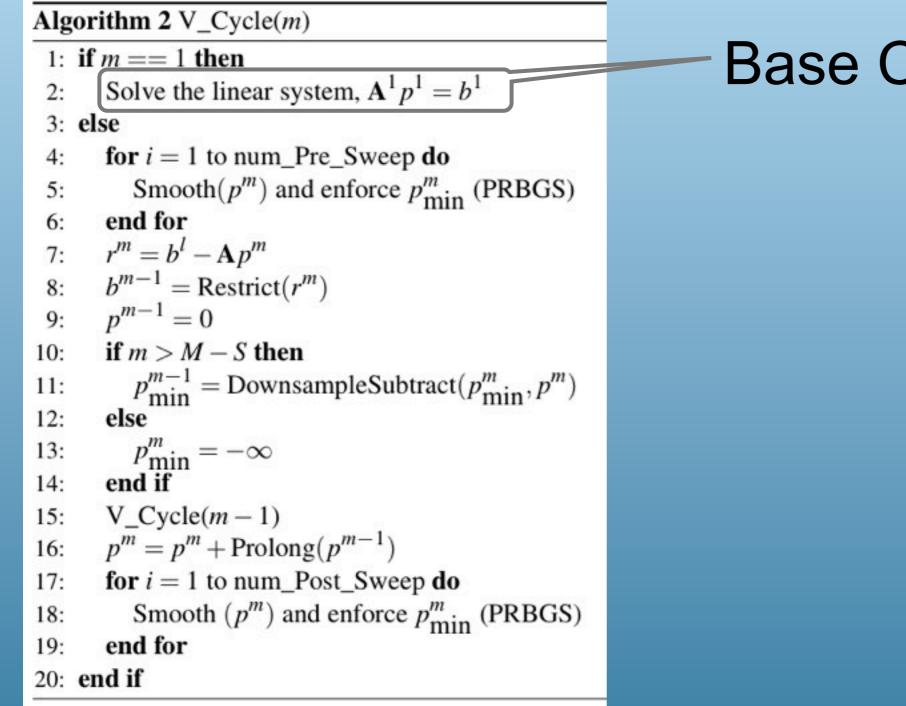






- Down sampling ϕ specially
 - Preserving air bubbles in a few finest levels, Chentanez & Müller 11





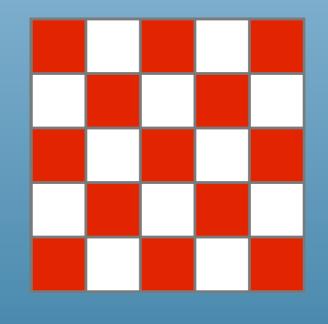
Base Case

Algorithm 2 V_Cycle(m) 1: if m == 1 then Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 2: 3: else for i = 1 to num_Pre_Sweep do 4: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 5: end for 6: $r^m = b^l - \mathbf{A}p^m$ 7: $b^{m-1} = \operatorname{Restrict}(r^m)$ 8: $p^{m-1} = 0$ 9: if m > M - S then 10: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$ 11: 12: else $p_{\min}^m = -\infty$ 13: end if 14: $V_Cycle(m-1)$ 15: $p^m = p^m + \operatorname{Prolong}(p^{m-1})$ 16: for i = 1 to num_Post_Sweep do 17: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 18: end for 19: 20: end if

Pre-smoothing

 $p_{i,j,k} = max(p_{\min i,j,k}, \frac{1}{A_{i,j,k}^{i,j,k}}(b_{i,j,k} - A_{i,j,k}^{i+1,j,k}p_{i+1,j,k} - \ldots))$

Projected Red Black Gauss Seidel

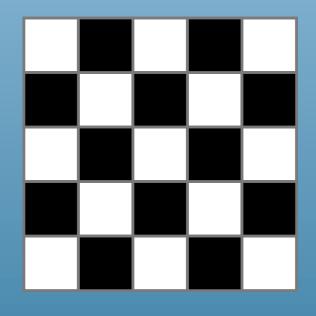


Algorithm 2 V_Cycle(m) 1: if m == 1 then Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 2: 3: else for i = 1 to num_Pre_Sweep do 4: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 5: end for 6: $r^m = b^l - \mathbf{A}p^m$ 7: $b^{m-1} = \operatorname{Restrict}(r^m)$ 8: $p^{m-1} = 0$ 9: if m > M - S then 10: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$ 11: 12: else $p_{\min}^m = -\infty$ 13: end if 14: $V_Cycle(m-1)$ 15: $p^m = p^m + \operatorname{Prolong}(p^{m-1})$ 16: for i = 1 to num_Post_Sweep do 17: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 18: end for 19: 20: end if

Pre-smoothing

 $p_{i,j,k} = max(p_{\min i,j,k}, \frac{1}{A_{i,j,k}^{i,j,k}}(b_{i,j,k} - A_{i,j,k}^{i+1,j,k}p_{i+1,j,k} - \ldots))$

Projected Red Black Gauss Seidel



Algorithm 2 V_Cycle(m) 1: if m == 1 then Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 2: 3: else for i = 1 to num_Pre_Sweep do 4: Smooth(p^m) and enforce p_{\min}^m (PRBGS) 5: end for 6: $\begin{bmatrix} r^m = b^l - \mathbf{A}p^m \\ b^{m-1} = \operatorname{Restrict}(r^m) \end{bmatrix}$ 7: 8: $p^{m-1} = 0$ 9: if m > M - S then 10: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$ 11: 12: else $p_{\min}^m = -\infty$ 13: end if 14: $V_Cycle(m-1)$ 15: $p^m = p^m + \operatorname{Prolong}(p^{m-1})$ 16: for i = 1 to num_Post_Sweep do 17: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 18: end for 19: 20: end if

Compute Residual

Algorithm 2 V_Cycle(m) 1: if m == 1 then Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 2: 3: else for i = 1 to num_Pre_Sweep do 4: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 5: end for 6: $r^{m} = b^{l} - \mathbf{A}p^{m}$ $b^{m-1} = \operatorname{Restrict}(r^{m})$ $p^{m-1} = 0$ 7: 8: 9: if m > M - S then 10: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$ 11: else 12: $p_{\min}^m = -\infty$ 13: end if 14: $V_Cycle(m-1)$ 15: $p^m = p^m + \operatorname{Prolong}(p^{m-1})$ 16: for i = 1 to num_Post_Sweep do 17: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 18: end for 19: 20: end if

Restrict

Down sampling
Tri-linear interpolation

Algorithm 2 V_Cycle(m) 1: if m == 1 then

- Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 2:
- 3: else
- for i = 1 to num_Pre_Sweep do 4:
- Smooth (p^m) and enforce p_{\min}^m (PRBGS) 5:
- end for 6:
- $r^m = b^l \mathbf{A}p^m$ 7:
- $b^{m-1} = \operatorname{Restrict}(r^m)$ 8: $p^{m-1} = 0$
- 9:
- if m > M S then 10: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$ 11:
- 12: else
- $p_{\min}^m = -\infty$ 13:
- end if 14:
- $V_Cycle(m-1)$ 15:
- $p^m = p^m + \operatorname{Prolong}(p^{m-1})$ 16:
- for i = 1 to num_Post_Sweep do 17:
- Smooth (p^m) and enforce p_{\min}^m (PRBGS) 18:
- end for 19:
- 20: end if

Want to make sure $p_{i,j,k}^m + \operatorname{Prolong}(p_{i,j,k}^{m-1}) \ge p_{\min i,j,k}^m$ Guaranteed by $p_{\min i, j, k}^{m-1} =$ DownsampleSubtract $(p_{\min}^m, p^m)_{i,j,k} =$ $\max_{a,b,c\in\{0,1\}} (p_{\min 2i+a,2j+b,2k+c}^m - p_{2i+a,2j+b,2k+c}^m)$

Only needed for the finest S levels

Algorithm 2 V_Cycle(m)

- 1: **if** m == 1 **then**
- 2: Solve the linear system, $\mathbf{A}^1 p^1 = b^1$
- 3: else
- 4: **for** i = 1 to num_Pre_Sweep **do**
- 5: Smooth (p^m) and enforce p_{\min}^m (PRBGS)
- 6: end for
- $7: \quad r^m = b^l \mathbf{A} p^m$

8:
$$b^{m-1} = \operatorname{Restrict}(r^m)$$

9:
$$p^{m-1} = 0$$

10: **if** m > M - S **then**

11:
$$p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$$

12: else

1

3:
$$p_{\min}^m =$$

14. end if

15:
$$V_Cycle(m-1)$$

16:
$$p^m = p^m + \operatorname{Prolong}(p^{m-1})$$

- 17: **for** i = 1 to num_Post_Sweep **do**
- 18: Smooth (p^m) and enforce p_{\min}^m (PRBGS)
- 19: **end for**
- 20: end if

Recursive to solve for *p*

Algorithm 2 V_Cycle(m) 1: if m == 1 then Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 2: 3: else for i = 1 to num_Pre_Sweep do 4: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 5: end for 6: $r^m = b^l - \mathbf{A}p^m$ 7: $b^{m-1} = \operatorname{Restrict}(r^m)$ 8: $p^{m-1} = 0$ 9: if m > M - S then 10: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$ 11: else 12: $p_{\min}^m = -\infty$ 13:

15:
$$V_Cycle(m-1)$$

16: $p^m = p^m + \operatorname{Prolong}(p^{m-1})$

- 17: **for** i = 1 to num_Post_Sweep **do**
- 18: Smooth (p^m) and enforce p_{\min}^m (PRBGS)
- 19: **end for**
- 20: end if

Prolong

- Up sampling
- Tri-linear interpolation

Algorithm 2 V_Cycle(m)

- 1: if m == 1 then 2: Solve the linear system, $\mathbf{A}^1 p^1 = b^1$
- 3: else
- 4: **for** i = 1 to num_Pre_Sweep **do**
- 5: Smooth (p^m) and enforce p_{\min}^m (PRBGS)
- 6: end for
- 7: $r^m = b^l \mathbf{A}p^m$
- 8: $b^{m-1} = \operatorname{Restrict}(r^m)$
- 9: $p^{m-1} = 0$
- 10: **if** m > M S **then**
- 11: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$
- 12: else
- 13: $p_{\min}^m = -\infty$
- 14: end if
- 15: $V_Cycle(m-1)$

16:
$$p^m = p^m + \operatorname{Prolong}(p^{m-1})$$

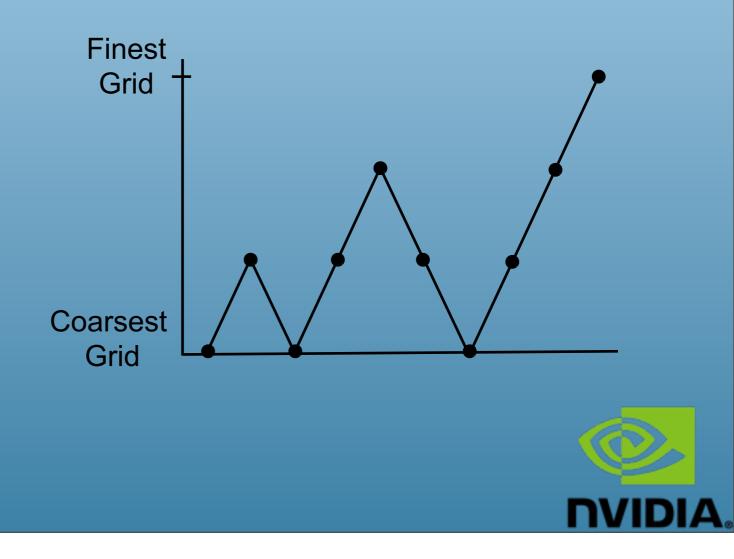
- 17: **for** i = 1 to num_Post_Sweep **do**
- 18: Smooth (p^m) and enforce p_{\min}^m (PRBGS)
- 19: end for
- 20: end if

Post Smooth

Algorithm 2 V_Cycle(m) 1: **if** m == 1 **then** Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 2: 3: else for i = 1 to num_Pre_Sweep do 4: Smooth(p^m) and enforce p_{\min}^m (PRBGS) 5: end for 6: $r^m = b^l - \mathbf{A}p^m$ 7: $b^{m-1} = \operatorname{Restrict}(r^m)$ 8: $p^{m-1} = 0$ 9: if m > M - S then 10: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$ 11: 12: else $p_{\min}^m = -\infty$ 13: end if 14: $V_Cycle(m-1)$ 15: $p^m = p^m + \operatorname{Prolong}(p^{m-1})$ 16: for i = 1 to num_Post_Sweep do 17: Smooth (p^m) and enforce p_{\min}^m (PRBGS) 18: end for 19: 20: end if

Differences from traditional Multigrid

Algorithm 3 Full_Cycle() 1: $p^{\text{tmp}} = p^M$ 2: Compute p_{\min}^M 3: $p_{\min}^M - = p^M$ 4: $r^M = b^M - \mathbf{A}p^M$ 5: for m = M - 1 down to 1 do 6: $r^m = \operatorname{Restrict}(r^{m+1})$ 7: **if** $m \ge M - S$ then $p_{\min}^{m} = \text{DownsampleSubtract}(p_{\min}^{m+1}, 0)$ 8: else 9: $p_{\min}^m = -\infty$ 10: end if 11: 12: end for 13: $b^1 = r^1$ 14: Solve the linear system, $\mathbf{A}^1 p^1 = b^1$ 15: for m = 2 to *M* do 16: $p^m = \operatorname{Prolong}(p^{m-1})$ 17: $b^m = r^m$ $V_Cycle(m)$ 18: 19: end for 20: $p^M = p^{\text{tmp}} + p^M$



Results

3D Dam Break in a Box

64x64x64 Grid

Monday, August 15, 2011

Results

Timing in ms, done in GTX480

Case	Res	No LCP	LCP	% Diff
BallBox	64 ³	19.00	21.26	11.89
DambreakBox	64 ³	18.89	21.17	12.07
RotatedBox	128^{3}	109.78	122.97	12.01
DambreakSphere	128 ³	109.67	122.58	11.77

No more than 12% slower than multigrid w/o LCP

- MG faster than CG about 13X, CM11
- Expected to be much faster than BBB07
 - Because the solver used was much slower than CG

Discussions

- Only one way solid-liquid coupling is currently supported
- Two-way solid-liquid such as by incorporating Robinson-Mosher et al. 08
 - Will be challenging and interesting future work

Thank you for your attention!

Monday, August 15, 2011

Solving LCP

- BBB07 formulate as quadratic programming (QP
 - Used PATH solver for it
 - Slow, feasible only for small 2D domain
- Narian et al. 10
 - Solve LCP resulting from sand simulation
 - Use conjugate gradient liked QP solver

