
Simulating Visual Geometry

Matthias Müller Nuttapong Chentanez Miles Macklin

NVIDIA Research

Figure 1: Left: A car model brought to life with our method. It can be driven, deformed and shattered and interacts with the environment as
expected. Right: Our simulation model based on convex polyhedra as primitives which are derived from the faces of the input mesh.

Abstract

In computer graphics, simulated objects typically have two or three
different representations, a visual mesh, a simulation mesh and a
collection of convex shapes for collision handling. Using multiple
representations requires skilled authoring and complicates object
handing at run time. It can also produce visual artifacts such as a
mismatch of collision behavior and visual appearance. The reason
for using multiple representation has been performance restrictions
in real time environments. However, for virtual worlds, we believe
that the ultimate goal must be WYSIWYS – what you see is what
you simulate, what you can manipulate, what you can touch.

In this paper we present a new method that uses the same represen-
tation for simulation and collision handling and an almost identical
visualization mesh. This representation is very close and directly
derived from a visual input mesh which does not have to be pre-
pared for simulation but can be non-manifold, non-conforming and
self-intersecting.

Keywords: deformation, fracture, tearing, convex primitives, ori-
ented particles, rigid body simulation

Concepts: •Computing methodologies→ Physical simulation;

1 Introduction

Objects in films and games are typically created in a digital con-
tent creation (DCC) tool as triangle or quad meshes that represent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
MiG ’16„ October 10-12, 2016, Burlingame, CA, USA
ISBN: 978-1-4503-4592-7/16/10
DOI: http://dx.doi.org/10.1145/2994258.2994260

the object’s surface. These meshes are fine tuned for rendering and
rigged kinematic animation but not prepared for physically-based
animation. One of the main difficulties is that visual meshes are
typically not conforming meaning that elements overlap. Often ob-
jects such as a cup and its handle are not modeled as one connected
mesh but as separate meshes that intersect each other.

A popular way to handle these problems is to not simulate the visual
mesh directly but to embed it in a simulation mesh or attach it to a
more general structure such as a mass-spring network or a skeleton.
There are several advantages of this method. The simulation mesh
can be tuned independenty of the tessellation of the visual mesh.
Often, the resolution of the simulation mesh is chosen to be lower
so small visual details do not slow down the simulation. Also, there
are no restrictions on the structure of the input mesh, it can even be
a triangle soup.

On the other hand, creating an appropriate simulation mesh can be
a non-trivial task. Also working with two representations compli-
cates the simulation code. Tearing and fracturing the visual mesh
along with the physical mesh becomes a complex problem. In ad-
dition separate representations for simulation and visualization can
yield visual artifacts.

For real time applications, simulating detailed and complex visual
geometry has been too slow because of the memory and compute
power restrictions of game consoles. With the recent introduction
of cloud gaming, this situation might change because the simulation
can be done on a powerful remote machine in this case. Therefore,
we were interested in finding a method to potentially simulate every
visible detail. We call this WYSIWYS, i.e. What You See Is What
You Simulate. Ultimately, an ideal virtual world should be WYSI-
WYS, especially in virtual reality environments which have become
very popular in recent years.

To make a step in that direction, we propose a method that uses a
simulation mesh which is very close to the visual mesh. We use
convex shapes as primitives. These are either created by extruding
polygonal faces of the visual input mesh along the negative nor-
mal direction or by identifying convex shapes surrounded by visual
faces.

http://dx.doi.org/10.1145/2994258.2994260


The primitives are connected via a general graph. In this graph,
two primitives are connected if they touch or overlap in the rest
state. We simulate this structure efficiently treating each primitive
as an oriented particle as in [MC11]. Representing these particles
with convex polyhedra rather than ellipsoids as in the original ap-
proach lets us model flat surfaces and sharp corners and edges. Pre-
cise shapes are essential especially after fracture events when the
pieces are in close proximity as Figure 7 shows. Since our primi-
tives are convex polyhedra, we can use the approach of Müller et
al. [MCK13] for subdivision and fracturing. In a hierarchical man-
ner, larger parts such as the car doors or the hood in Figure 1 are
grouped into bodies and connected via joints. Since rigid body en-
gines such as PhysX represent objects as a collection of convex
shapes, they can be used directly to simulate the object on this
higher level. Our representation can be created quickly and main-
tained in a straight forward way through deformations and fracture
events.

Our main contributions are

• The representation of objects with convex polyhedra derived
directly from the visual mesh and a connectivity graph defined
by their proximity in the rest state.

• Using the oriented particle approach to simulate these convex
polyhedra instead of ellipsoids.

• The idea of deforming the primitives using the affine transfor-
mation provided by shape matching. This idea is general and
can be applied to other frameworks as well.

• The definition of a graphical mesh that follows the primi-
tives closely, stays watertight throughout deformations and is
straight forward to tear and fracture.

• Extending the method of [MCK13] for brittle fracture to duc-
tile fracture and the simulation of detailed deformations in
coarse parts of the mesh.

2 Related Work

Our method is built on a few core ideas, namely using a general,
non-conforming unstructured mesh, combining the rigid body for-
mulation with a deformable model, fracture and tearing algorithms
and a unified solver based on position based dynamics (PBD)
[BMM15]. There is a large body of work in all those fields so we
will mention only the most relevant papers for our method.

2.1 Simulation Models

In solid simulations, a variety of models have been used to rep-
resent objects. Early solutions are mass-spring networks [SLF08]
and regular grids in connection with finite differences [TF88]. Reg-
ular grids have also been used in connection with finite elements
(FEM) [MTG04]. The most popular representation for deformable
volumetric objects are tetrahedral meshes mostly simulated with
the finite element method such as [OH99], [ITF04]. Another so-
lution for solid simulations is to use particles without connectiv-
ity. FEM can be formulated for this representation via the moving
least squares technique (MLS) as in [MKN∗04]. The material point
method has become pupular in recent years. It is a hybrid method
that alternates between particles and a grid [SSC∗13], [SSJ∗14],
and [RGJ∗15]. The use of Eulerian grids has been proposed for
solid simulation as well [PLF14].

We use the oriented particles method proposed by Müller et al.
[MC11]. The underlying model is a set of particles with orienta-
tion which are connected in an unstructured, arbitrary way. The ap-
proach is a generalization of the shape matching method [MHT05],

[RJ07]. The oriented particle idea is somewhat related to the con-
cept of elastons [MKB∗10] in the sense that it can handle one-,
two- and three dimensional objects in a unified way. Another re-
lated method is the approach of Faure et al. [FGBP11] which uses
control points with orientation to define a continuous deformation
field. Recently Choi et al. [Cho] have extended the oriented parti-
cles to support tearing and fracturing.

For the simulation we use a unified solver based on PBD as Macklin
et al. [MMCK14] with the extension of handling convex polyhedra
as primitives in addition to sphere shaped particles and a position
based rigid body formulation similar to the one proposed by Bender
et al. [DCB14]. The PDB formulation was extended by Bouaziz et
al. [BML∗14] by including an inertia term to make the method com-
patible with implicit Euler integration and reduce damping. The
latter can also be achieved by using a second order velocity up-
date [BMM15].

2.2 Embedding of a Visual Mesh

In games and film, objects are defined by visual surface meshes
which are typically not tuned for simulation. Therefore, the most
popular approach has been to embed the visual mesh in a simulation
mesh. This fundamental idea has been introduced by Sedeberg et
al. [SP86] with free form deformation. Here objects are deformed
by deforming a surrounding cage. Müller et al. have embedded
a separate visual mesh in a tetrahedral mesh [MG04] and a regu-
lar grid [MTG04] and have shown how to split it when the simu-
lation mesh fractures. Instead of interpolating vertex positions of
a surrounding simulation mesh, the transformations of bones of a
skeleton are blended in linear blend skinning [MTLT]. In [MC11],
Müller et al. use a similar idea to attach a visual mesh to oriented
particles by blending the transformations defined in nearby particles
by their position and orientation. Without a surrounding volumetric
mesh, splitting the visual mesh becomes a difficult problem. Jones
et al. [JML∗16] do not work with an arbitrary surface mesh but cre-
ate a conforming tetrahedral mesh for visualization which they split
along the tetrahedral boundaries. This approach can yield artifacts
when the structure of the tetrahedral mesh becomes visible. In con-
trast, applying the fracture method of Müller et al. [MCK13] makes
sure that the mesh structure remains hidden and only the tear lines
in the fracture pattern become visible after tearing and fracturing.

2.3 Fracturing and Tearing

As the pioneers in physically based animation, Terzopoulos et al.
[TF88] also introduced fracture simulation to computer graphics.
They broke links in a regular grid finite difference model if the
stresses exceeded a given threshold. Later O’Brien et al. used
a tetrahedral mesh in connection with FEM for the simulation of
brittle [OH99] and ductile [OBH02] fracture. They determined the
fracture directions based on the direction of the stresses inside the
material. A large body of work based on similar ideas followed. For
computer games however, FEM based stress analysis is typically
computationally too expensive. The traditional and most popular
approach here is to use pre-fractured models and simply replace
the whole by the parts at run time. With this approach, the actual
impact location cannot be taken into account. To bridge the gap
between these too extremes, Su et al. [SSF09] proposed to use pre
defined fracture patterns that are applied at the impact location at
run time using signed distance fields. Müller et al. [MCK13] made
this approach pixel accurate and applicable to games by represent-
ing objects and fracture patterns with convex decompositions which
is the approach we use in our method.



Figure 2: From visual to simulation mesh (2d cut). Top: the in-
put triangles (dark blue) are extruded to form volumetric convex
primitives (light blue). Second row: the vertices of the primitives
(light blue) are grouped and their position averages (red) for visu-
alization. This yields a consistent inner surface in the rest state.
Third row: during simulation the primitives change their poses po-
tentially yielding gaps. Bottom: the gaps are closed when the aver-
aged positions are used for visualization.

3 The Method

We will now describe the steps from a visual mesh to a physical
simulation in more details.

3.1 Physical Mesh Creation

Our input is a visual mesh with triangle and quad faces potentially
intersecting each other. The physical properties that cannot be de-
rived from the geometry automatically are defined by the user for
each sub-mesh in analogy to the graphical material parameters. Ex-
amples of physical parameters are, thickness, material type such as
soft, plastic or brittle and stiffness.

With this additional information, the input mesh is automatically
turned into a simulation mesh as shown in Figures 2 and 3.

Each face is turned into a convex polyhedron by extruding it along

Figure 3: Left part: if enclosed convex shapes are detected in the
visual mesh, these are transformed into single primitives. The vi-
sual faces on the right are extruded because they do not belong to
an enclosed volume.

Figure 4: Joint definition. Joints are defined by boxes. Their pose
determines the location and extent of the joint while their names
defines the joint type and the participating bodies.

the negative normal by the user defined thickness. These polyhe-
dra become the primitives of our simulation mesh. The top row of
Figure 2 shows this in a 2d cut, where the faces are shown as dark
blue segments and the primitives as light blue boxes. If desired, we
also create single primitives from visual geometry that encloses a
convex shape as shown in Figure 3. Only the input faces that are
not used in this way are extruded. This allows the definition of
more general convex primitives and filled shapes. We then create a
connection between each pair of primitive that touch or intersects.
This results in a general mesh structure. Independent input meshes
that are connected only visually by overlapping parts get physically
connected.

To build objects like the car in Figure 1 we allow the user to connect
sub-meshes via joints. The joints are defined via additional boxes
where the mesh name defines the joint type and the orientation the
local axes as shown in Figure 4. In addition, each primitive of a soft
body is automatically attached to overlapping rigid bodies. In this
way, soft tires get automatically attached to the wheel.

3.2 The Simulation Method

For the simulation, we use a unified solver based on convex polyhe-
dra as primitives. Since the primitives have an extent and therefore
an orientation and since their connectivity is a general graph, the
oriented particle approach [MC11] is ideal for the simulation of the
objects. We define one shape matching group per primitive and all
its 1-ring neighbors. These are used for both, soft body simulations
of entire objects and plasticity simulations inside rigid objects. Due
to the stability of the method, fine structures are handled robustly.
Since all primitives are convex polyhedra we can use standard col-
lision detection based on sweep and prune for the broad phase and
the separating axis theorem for the narrow phase. Due to the large
number of primitives, collision detection becomes the bottle neck,
especially in situations where only a few rigid objects have to be
simulated as in the car scene shown in Figure 1 but we still want
detailed collision handling. We therefore use a three stage colli-
sion detection approach. In a broad phase, we find intersections
of the bounds of entire objects. For pairs of intersecting objects
we identify all their primitives that intersect the cut of the two ob-
ject bounds. After identifying intersecting bounds of these primi-
tive pairs in a second sweep and prune run, we perform the narrow
phase convex - convex test using the separating axis theorem.



Figure 5: Simulating a curtain. Top: using standard oriented par-
ticles. Middle: the local affine transformation of shape matching is
applied to the primitives which reduces gaps significantly. Bottom:
The visual mesh.

3.3 Deforming Primitives

The standard oriented particle approach only modifies the location
and orientation of primitives. This potentially yields gaps and colli-
sion artifacts as shown in the third row of Figure 2 and the top row
of Figure 5. However, changing the shapes of primitives arbitrarily
can destroy their property of being convex, the property that is es-
sential for collision handling and fracturing. Fortunately we found a
simple effective way to reduce these gaps substantially while keep-
ing the primitives convex as shown in the second row of Figure 5.
For this we deform the primitives using the local affine deformation
matrices computed in the oriented particle approach. Being linear,
this deformation preserves convexity of the primitives.

The local deformation matrix is computed from the positions of a
particle and all its neighbors [MC11] as

A = ∑
i

(
Ai +mixix̄T

i

)
−Mcc̄T , (1)

where Ai =
1
5 mir2

i Ri and Ri,mi, ri, x̄i and xi are the orientation
matrix, mass, radius, rest and current position of primitive i, M the

total mass and c̄ and c the rest and current center of mass of the
neighborhood.

The matrix A defined in this way is sufficient to extract an optimal
rotation but does not correspond to the true best fit affine transfor-
mation as noted in [MHT05]. To get our desired deformation matrix
D, we generalize the normalization of [MHT05] to the orientated
particle approach and get

D = AĀ−1, (2)

where
Ā = ∑

i

(
Āi +mix̄ix̄T

i

)
−Mc̄c̄T (3)

and Āi =
1
5 mir2

i I. This normalization does not have to be performed
at every solver iteration but only once per time step before collision
handling.

3.4 The Visualization Mesh

Although the affine deformation of the primitives greatly reduces
collision artifacts, it still yields small visual gaps as shown in Fig-
ure 5.

Therefore, we propose a new type of visualization mesh that stays
close to the simulated primitives and for which fracturing and tear-
ing can be implemented in a straight forward way. This is in con-
trast to attaching a general mesh to an independent simulation mesh
where complex boolean operations have to be performed on the fly.
Our basic idea is that vertices of different primitives are joined for
visualization. For this each vertex of each primitive stores an iden-
tifier id that is global to the containing body. Vertices with the
same global id are joined visually in two passes. First, all the po-
sitions of the vertices of the primitives are added to an array with
an entry for each global id. These sums are then averaged. In a
second pass, each vertex reads back the visual position from this
array. Even without deformations, the inner surface of the simula-
tion mesh contains gaps as shown at the top of Figure 2. The second
row of Figure 2 shows that the visualization mesh has a consistent
inner surface. The bottom row shows the visual mesh (red) when
the simulation mesh (blue) is deformed.

Since our primitives are generated from faces of a polygonal mesh,
we can use the vertex number of this mesh as the global id inside
each primitive. For the vertices that are generated through extruding
we generate the same connectivity structure. This way, the mesh is
closed on the inside as well even though we use the face normals
and not the vertex normals for the extrusion.

3.5 Plastic Deformation

In case of rigid parts, we treat the entire object as one rigid body
between deforming impacts. Only when they are plastically de-
formed, the oriented particle approach is used to rearrange the prim-
itives locally in a quasi-static simulation. This yields a substantial
speed up. The car in Figure 1 has 17k primitives but only 20 rigid
parts and runs at over 100 fps. Since we still use the detailed mesh
for collision handling in this case, the fidelity of the simulation re-
mains unchanged. To decide whether an object needs to be plas-
tically deformed, we iterate through the contacts provided by the
collision engine and check whether the relative normal velocity is
above a threshold defined in the material. We define the deforma-
tion offset to be the relative normal velocity multiplied by the time
step. This vector is transformed into the local frames or the objects
to displace the participating primitive. After all contacts are pro-
cessed and the corresponding primitives moved, we simulate all the
primitives in a quasi static way holding all primitives that intersect



Figure 6: Tearing. To tear a mesh, a fracture pattern is applied to
subdivide the surface. Only a subset of the links between the primi-
tives are marked as tearable, yielding a pre-defined tear pattern.

the shape of joints fixed. This is why joints have to be defined with
a spatial extent. It is because they act as boundary conditions for
the static solver. After the modification of the local positions of
primitives, the center of mass and inertia tensor of the containing
object have to be re-computed.

3.6 Subdivision, Fracture and Tearing

A further advantage of using convex polyhedra as primitives is that
we can use the approach of Müller et al. [MCK13] for fracturing
the mesh. The main idea is to use a fracture pattern which is a
connected set of convex polyhedra like the objects to be fractured.
First, the fracture pattern is aligned with the impact location and
then the cuts of all the primitives of the objects against all fracture
cells are computed. All resulting pieces within a fracture cells are
combined to form new independent objects. This process simulates
brittle fracture and is used for the shattering of the car windows
shown in Figure 7.

We propose a modification of this approach that lets us simulate
ductile fracture and adaptive level of detail. The idea is to not sepa-
rate the resulting objects immediately but keep all the pieces in the
same object. The effect of applying a pattern in this way is that a
mesh is subdivided close to an impact location allowing the forma-
tion of detailed deformation patterns in regions where the original
mesh is coarse. The wings of the door shown in Figure 10 only
contain a few large faces. After applying a fracture pattern, small
scale deformations are generated. With deformation patterns, fine
tesselation is created only where needed at run time.

Two further extensions allow the simulation of ductile fracture and
tearing as shown in Figure 6. First, we test whether the distance
between a connected pair of primitives exceeds a threshold. This

Figure 7: A glass fracture pattern is applied to the car’s window.
The small pieces remain at the correct positions on the detailed
surface and inside the car.

Figure 8: Fracture of the visual mesh. The fracture operation is
performed in the undeformed state. The vertices to be grouped are
determined from scratch after a fracture event. Left: all vertices
(light blue) that share the same location are grouped. Middle: the
averaged positions in the deformed state. Right. The fractured mesh
in the deformed state.

Figure 9: Tearing of the visual mesh. Top: a set of primitives only
shares a common visual vertex if they are mutually connected. If
a torn link separates this set, each set gets its own visual vertex.
Bottom: this yields the correct crack in the visual mesh.



threshold is defined as a strain limit defined in the material times
the rest length. If this is the case, we mark the connection as bro-
ken. Second, it is important to only make a subset of the links
breakable. Only links introduced by applying a fracture pattern and
not the ones created from the initial mesh should be broken, other-
wise the initial tessellation becomes visible in the fracture lines. In
addition, by only making a subset of the links of the fracture pattern
breakable, an artist can pre-define tear lines such as the ones shown
in Figure 6.

Fracturing and tearing require updates in the visual mesh. These
are substantially less complex than updating an independent visual
mesh because we have a one to one correspondence between visual
faces and simulation primitives. All we have to do is to update
or re-compute the global ids of the vertices. Figure 8 shows how
fracture is handled.

It would be a difficult task to derive new global ids from the old
ones after a fracture event in which many new primitives are gener-
ated. Fortunately we found a simple solution for this problem. We
always apply the fracture patterns in the undeformed configuration.
In this configuration the newly introduced as well as the previous
vertices that should be grouped, i.e. get the same global id can be
identified as the ones that have the same positions. This can be
tested efficiently by sorting the vertices along the x, y, or z axis.
In Figure 8, the cut in the undeformed configuration is shown on
the left. The middle image shows how co-located vertices get the
same global ids and the same averaged positions which results in
the deformed configuration shown on the right.

To handle tearing, we maintain the following condition: Primitives
that share a common global id need to be linked. To ensure this
we need to know the number val(id) of vertices that share each
global id. This is computed for averaging during the evaluation of
the visual positions. Given a primitive and one of its global ids, we
perform the tearing as follows. We flood the graph starting from the
primitive and visiting only neighbors that contain the given global
id. If the number of visited primitives is smaller than val(id), we
create a new global id′ and place id with id′ in all visited primitives.
Then we subtract val(id′) from val(id). This local procedure is
executed for both primitives adjacent to a broken link and all their
referenced global ids. We show the result of this process in Figure 9.

Finally the joints have to be updated as well after a tearing or frac-
ture event. Here we leverage the fact that joints are defined with
spatial extents again. If an object gets separated into two or more
parts it is deleted and replaced by a set of new objects. We then
check all new objects against all the joints adjacent to the original
object. If a new object intersects the volume of the joint, a new joint
is created with the same attributes but referencing the new object.
After all new objects and joints are created, the old body and all the
joints referencing it are deleted.

4 Results

In all our examples we used a single core of an Intel Core i7 CPU
at 3.1 GHz. At the moment we have a non-optimized serial im-
plementation and expect to get substantial speedups with a GPU
parallelization.

To simulate the car shown in Figure 1 we removed some interior
geometry and left most of the outer input mesh as is. There are 21
objects, 28 joints and a total of 16k primitives. Creating the au-
thored model in Blender shown in Figure 4 took less than an hour.
The car simulates at more than 60 fps because the simulation con-
sists of handling the high level objects only. When a deformation
happens, the object’s internal static solver is called and takes in the
order of 1-10 ms per hit. In the accompanying video we show how

the bullets and shattered pieces interact with the detailed geometry
of the car.

Figure 5 shows a simulated curtain which demonstrates the effec-
tiveness of applying the local affine transformation given by shape
matching to the primitives.

The door scene shown in Figure 10 has 4 objects, 4 joints and 700
primitives at the start. Each first hit per object adds about 1k new
primitives when the deformation pattern is applied. Between the
impacts this scene runs at more than 100 fps.

The fourth experiment shown at the bottom of Figure 11 shows how
soft body attachments persist throughout tearing. We did not mod-
ify the model of the monster truck for simulation but only added 9
joints. There are 45k primitives and the scene runs at 30 fps where
most of the time is spent for solving the soft tires composed of 2.5k
primitives each.

In the final scene shown in the top two shots of Figure 11 we sim-
ulated the monster truck driving over a shaky bridge. In addition
to the monster truck there are 600 primitives and 1.5k attachments
coming from the bridge. This complex scenario runs stably with
our unified position based solver at 20 fps. The ropes are attached
to the static blocks and simulated as soft bodies. The wooden steps
are simulated as rigid bodies and are attached to the ropes. They in-
teract with the soft tires via collisions. The tires are attached to the
wheels which are in turn connected to the rest of the car via joints.

5 Conclusion and Future Work

We have presented a method to directly simulate the visual geom-
etry provided by artists with the goal of generating a WYSIWYS
virtual environment in which a user can potentially manipulate all
details in a scene. For this we turn visual mesh faces into convex
polyhedral primitives and define a mesh structure by connecting
all touching or overlapping primitives. We simulate this general
mesh using the oriented particle approach. On a higher level sub-
meshes are turned into simulation objects and connected via joints.
To substantially accelerate the simulation of plastic objects, we treat
them as rigid objects between collisions. Using convex polyhedra
as primitives allows us to use standard collision algorithms, the rep-
resentation of sharp features and precise tearing and fracture oper-
ations.

At the moment all visual details are turned into simulation primi-
tives. It might be reasonable to turn very small features into nor-
mal maps or similar visual representations and only keep elements
larger than a threshold in the physical mesh.



Figure 10: A metal door is deformed and torn. Initially, there
only 8 faces per wing. At run-time, the application of the defor-
mation pattern increases the tessellation density to represent the
small scale features.

Figure 11: Top: A complex interaction of various material types,
joints and attachments. Bottom: The bursting tires show how at-
tachments of soft bodies to rigid object persist when fractured.



References

BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.: Pro-
jective dynamics: Fusing constraint projections for fast simula-
tion. ACM Trans. Graph. 33, 4 (July 2014), 154:1–154:11. URL:
http://doi.acm.org/10.1145/2601097.2601116.

BENDER J., MÜLLER M., MACKLIN M.: Position-based simula-
tion methods in computer graphics. EUROGRAPHICS Tutorial
Notes, Zürich, May 4-8 (2015).

CHOI M. G.: Real-time simulation of ductile fracture with oriented
particles. Computer Animation and Virtual Worlds 25, 3-4. URL:
http://dx.doi.org/10.1002/cav.1601.

DEUL C., CHARRIER P., BENDER J.: Position-based rigid body
dynamics. In Computer Animation and Social Agents (CASA)
(2014).

FAURE F., GILLES B., BOUSQUET G., PAI D. K.: Sparse mesh-
less models of complex deformable solids. In ACM SIGGRAPH
2011 Papers (2011), SIGGRAPH ’11, pp. 73:1–73:10.

IRVING G., TERAN J., FEDKIW R.: Invertible finite elements for
robust simulation of large deformation. In Proceedings of the
ACM SIGGRAPH Symposium on Computer Animation (2004),
pp. 131–140.

JONES B., MARTIN A., LEVINE J. A., SHINAR T., BARGTEIL
A. W.: Ductile fracture for clustered shape matching.

MÜLLER M., CHENTANEZ N.: Solid simulation with oriented
particles. ACM Trans. Graph. 30, 4 (July 2011), 92:1–92:10.
URL: http://doi.acm.org/10.1145/2010324.1964987.

MÜLLER M., CHENTANEZ N., KIM T.-Y.: Real time dynamic
fracture with volumetric approximate convex decompositions.
ACM Trans. Graph. 32, 4 (July 2013), 115:1–115:10. URL:
http://doi.acm.org/10.1145/2461912.2461934.

MÜLLER M., GROSS M. H.: Interactive virtual materials. In
Graphics Interface 2004 (London, Ontario, Canada, 2004),
pp. 239–246.

MÜLLER M., HEIDELBERGER B., TESCHNER M.: Meshless de-
formations based on shape matching. In Proc. SIGGRAPH 2005
(2005), pp. 471–478.

MARTIN S., KAUFMANN P., BOTSCH M., GRINSPUN E., GROSS
M.: Unified simulation of elastic rods, shells, and solids. ACM
Trans. Graph. 29, 4 (July 2010), 39:1–39:10. URL: http://doi.
acm.org/10.1145/1778765.1778776.

MÜLLER M., KEISER R., NEALEN A., PAULY M., GROSS M.,
ALEXA M.: Point Based Animation of Elastic, Plastic and
Melting Objects. In Symposium on Computer Animation (2004),
Boulic R., Pai D. K., (Eds.), The Eurographics Association.
doi:10.2312/SCA/SCA04/141-151.

MACKLIN M., MÜLLER M., CHENTANEZ N., KIM T.-Y.: Unified
particle physics for real-time applications. ACM Trans. Graph.
33, 4 (July 2014), 153:1–153:12. URL: http://doi.acm.org/10.
1145/2601097.2601152.

MÜLLER M., TESCHNER M., GROSS M.: Physically-based sim-
ulation of objects represented by surface meshes. In in Proceed-
ings of Computer Graphics International (CGI) (2004), pp. 26–
33.

MAGNENAT-THALMANN N., LAPERRIERE R., THALMANN D.:
Joint-dependent local deformations for hand animation and ob-

ject grasping. In Proceedings on Graphics Interface 88 (Toronto,
Ont., Canada, Canada).

O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.: Graphical
modeling and animation of ductile fracture. In Computer Graph-
ics (SIGGRAPH 2002 Proceedings) (San Antonio, Texas, July
2002), pp. 291–294.

O’BRIEN J. F., HODGINS J. K.: Graphical modeling and ani-
mation of brittle fracture. In Computer Graphics (SIGGRAPH
’99 Proceedings) (New York, Aug. 1999), ACM Press, pp. 137–
146. doi:http://doi.acm.org/10.1145/311535.
311550.

PAI D. K., LEVIN D. I. W., FAN Y.: Eulerian solids for soft
tissue and more. In ACM SIGGRAPH 2014 Courses (2014),
SIGGRAPH ’14, pp. 22:1–22:151. URL: http://doi.acm.org/10.
1145/2614028.2615413.

RAM D., GAST T., JIANG C., SCHROEDER C., STOMAKHIN
A., TERAN J., KAVEHPOUR P.: A material point method
for viscoelastic fluids, foams and sponges. In Proceedings of
the 14th ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation (2015), SCA ’15, pp. 157–163. URL: http:
//doi.acm.org/10.1145/2786784.2786798.

RIVERS A. R., JAMES D. L.: Fastlsm: Fast lattice shape match-
ing for robust real-time deformation. In ACM Transactions on
Graphics (Proc. SIGGRAPH 2007) (2007), vol. 26(3), pp. 82:1–
82:6.

SELLE A., LENTINE M., FEDKIW R.: A mass spring model for
hair simulation. ACM Trans. Graph. 27, 3 (Aug. 2008), 64:1–
64:11. URL: http://doi.acm.org/10.1145/1360612.1360663.

SEDERBERG T. W., PARRY S. R.: Free-form deformation of
solid geometric models. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques
(1986), SIGGRAPH ’86, pp. 151–160. URL: http://doi.acm.org/
10.1145/15922.15903.

STOMAKHIN A., SCHROEDER C., CHAI L., TERAN J., SELLE
A.: A material point method for snow simulation. ACM Trans.
Graph. 32, 4 (July 2013), 102:1–102:10.

SU J., SCHROEDER C., FEDKIW R.: Energy stability and frac-
ture for frame rate rigid body simulations. In Proceedings of
the 2009 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2009), SCA ’09, pp. 155–164. URL: http:
//doi.acm.org/10.1145/1599470.1599491.

STOMAKHIN A., SCHROEDER C., JIANG C., CHAI L., TERAN
J., SELLE A.: Augmented mpm for phase-change and varied
materials. ACM Trans. Graph. 33, 4 (July 2014), 138:1–138:11.
URL: http://doi.acm.org/10.1145/2601097.2601176.

TERZOPOULOS D., FLEISCHER K.: Modeling inelastic deforma-
tion: Viscoelasticity, plasticity, fracture. In the Proceedings of
ACM SIGGRAPH 88 (1988), pp. 269–278.

http://doi.acm.org/10.1145/2601097.2601116
http://dx.doi.org/10.1002/cav.1601
http://doi.acm.org/10.1145/2010324.1964987
http://doi.acm.org/10.1145/2461912.2461934
http://doi.acm.org/10.1145/1778765.1778776
http://doi.acm.org/10.1145/1778765.1778776
http://dx.doi.org/10.2312/SCA/SCA04/141-151
http://doi.acm.org/10.1145/2601097.2601152
http://doi.acm.org/10.1145/2601097.2601152
http://dx.doi.org/http://doi.acm.org/10.1145/311535.311550
http://dx.doi.org/http://doi.acm.org/10.1145/311535.311550
http://doi.acm.org/10.1145/2614028.2615413
http://doi.acm.org/10.1145/2614028.2615413
http://doi.acm.org/10.1145/2786784.2786798
http://doi.acm.org/10.1145/2786784.2786798
http://doi.acm.org/10.1145/1360612.1360663
http://doi.acm.org/10.1145/15922.15903
http://doi.acm.org/10.1145/15922.15903
http://doi.acm.org/10.1145/1599470.1599491
http://doi.acm.org/10.1145/1599470.1599491
http://doi.acm.org/10.1145/2601097.2601176

