
Small Steps in Physics Simulation
Miles Macklin

NVIDIA
University of Copenhagen
mmacklin@nvidia.com

Kier Storey
NVIDIA

kstorey@nvidia.com

Michelle Lu
NVIDIA

michellel@nvidia.com

Pierre Terdiman
NVIDIA

pterdiman@nvidia.com

Nuttapong Chentanez
NVIDIA

nchentanez@nvidia.com

Stefan Jeschke
NVIDIA

sjeschke@nvidia.com

Matthias Müller
NVIDIA

matthiasm@nvidia.com

ABSTRACT
In this paper we re-examine the idea that implicit integrators with
large time steps offer the best stability/performance trade-off for
stiff systems. We make the surprising observation that performing
a single large time step with n constraint solver iterations is less
effective than computing n smaller time steps, each with a single
constraint solver iteration. Based on this observation, our approach
is to split every visual time step into n substeps of length ∆t/n and
to perform a single iteration of extended position-based dynamics
(XPBD) in each such substep. When compared to a traditional
implicit integrator with large time steps we find constraint error and
damping are significantly reduced. When compared to an explicit
integrator we find that our method is more stable and robust for a
wider range of stiffness parameters. This result holds even when
compared against more sophisticated implicit solvers based on
Krylov methods. Our method is straightforward to implement, and
is not sensitive to matrix conditioning nor is it to overconstrained
problems.

CCS CONCEPTS
•Computingmethodologies→ Simulation by animation; In-
teractive simulation.

KEYWORDS
Physics-based animation, real-time simulation

ACM Reference Format:
Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chen-
tanez, Stefan Jeschke, and Matthias Müller. 2019. Small Steps in Physics Sim-
ulation. In SCA ’19:The ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation (SCA ’19), July 26–28, 2019, Los Angeles, CA, USA.ACM, New
York, NY, USA, Article 39, 7 pages. https://doi.org/10.1145/3309486.3340247

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCA ’19, July 26–28, 2019, Los Angeles, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6677-9/19/07. . . $15.00
https://doi.org/10.1145/3309486.3340247

Figure 1: High resolution cloth consisting of 150k particles,
and 896k spring constraints draped over a Stanford bunny.
With 1 substep and 30 XPBD iterations the simulation takes
12.4ms/frame but shows visible stretching (left). With 30
substeps, each performing only 1XPBD iteration the simula-
tion takes 13.5ms/frame but shows significantly less stretch-
ing and higher material stiffness (right). In both cases we
have performed collision detection once per-frame.

1 INTRODUCTION
The simulation of physical systems is a challenging problem in
interactive computer graphics. Ideal algorithms should not only
reproduce the underlying physical model, they should be robust
and efficient enough for real-time applications and user interaction.
Many methods exist to evolve a physical system forward in time,
however they can broadly be split into two categories: explicit and
implicit methods.

Explicit time-integration is rarely used in physical simulations
because it is only conditionally stable. This means that the simula-
tion can diverge any time if certain conditions are not met. For this
reason, implicit integrators are often preferred due to their stability.
However, in contrast to explicit integration, where the state of the
next time step can be computed directly from the current state, for
implicit integration a system of non-linear equations must be solved

https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247

SCA ’19, July 26–28, 2019, Los Angeles, CA, USA M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and M. Müller

at every time step. Typically this is done using a Newton method
that repeatedly linearizes the non-linear system. Each linear sys-
tem is then solved by a global solver such as Conjugate Gradients
(CG) or direct methods, and the solution is used to get closer to the
non-linear one. First order implicit methods introduce numerical
damping, and are often more computationally expensive than ex-
plicit methods. In addition, they may not guarantee a time-bound
on convergence, which makes them less attractive for interactive
applications.

For real-time applications, local iterative relaxation methods
such as Position-based Dynamics (PBD) [Müller et al. 2007] are
popular. Unlike global solvers which treat the system of equations
as a whole, local solvers such as the Projected Gauss-Seidel (PGS)
iteration used in PBD handle each equation individually, one after
the other. These methods are known to be very robust on typical
problems. This is due in part to the fact that during a global solve the
system matrix is frozen, meaning all constraint gradients are held
fixed. This can cause the solution to move far from the constraint
manifold. In contrast, non-linear PGS methods work on the system
of non-linear equations directly. Each constraint projection uses
the current gradients, which minimizes overshooting. In addition,
relaxationmethods are robust for overconstrained systems that pose
a challenge for global linear solvers, which may fail to converge at
all in such scenarios. Furthermore, solving each equation separately
allows PGS to trivially handle unilateral (inequality) constraints.
Here, only constraints which violate the inequality conditions (the
active set) are projected. This set can change in every iteration and
even after each constraint projection, which prevents sticking. To
simulate the two-way coupling of different features like liquids and
rigid bodies, their list of constraints are simply concatenated or
interleaved, allowing fine-grained coupling [Macklin et al. 2014;
Stam 2009].

Despite their advantages, due to their local nature, relaxation
methods propagate error corrections more slowly than if the equa-
tions are solved simultaneously, making them less suitable for stiff
problems. They also suffer from numerical dissipation like tradi-
tional implicit methods. The aim of this project was to increase the
convergence rate and energy preservation of local solvers while
keeping all their advantages. We derived our solution from a rather
surprising observation. There are two ways to increase the accuracy
of a simulation: either decrease the time step size, or increase the
number of solver iterations. Both increase the amount of computa-
tional work that has to be done. Consequently, if we want to keep
the work constant we have to change both. If we decide to increase
the number of solver iterations or the complexity of the solver,
we have to increase the time step size to stay within the computa-
tional budget. On the other hand, if we decide to take smaller time
steps, then we have to decrease the number of solver iterations.
The question we asked was which direction is more effective. Is it
more effective to (a) solve one difficult problem accurately, or (b)
many simpler problems approximately. Since the work of Baraff
et al. [1998], the commonly accepted knowledge in the computer
graphics community has been to prefer large steps and implicit
methods for stiff problems.

However, in our studies we found that (b) is significantly more
effective than (a). In fact, for PGS the optimum lies at the far end of
(b), i.e. taking as many small steps as the time budget allows while

Table 1: Summary of the relative strengths and weaknesses
of each method.

Method Stability Efficiency Simplicity Energy
Semi-Implicit Euler ✓ ✓ ✓
Implicit Euler ✓
XPBD ✓ ✓ ✓
Small Steps ✓ ✓✓ ✓ ✓

performing a single iteration in each step. Based on this observation
we split a time step of size ∆t into n substeps of size ∆t/n and
perform one iteration of Extended Position Based Dynamics (XPBD)
in each substep. The effect of replacing iterations by substeps is so
substantial that one-step XPBD is competitive with sophisticated
global matrix solvers in terms of convergence. Intuitively, a single
pass over the constraints seems hardly enough to yield meaningful
information about forces and torques, but our results show that
this is actually not the case. Indeed, as was shown by Macklin et
al [2016], the first iteration of XPBD is equivalent to the first step
of a Newton solver operating on the backward Euler equations.
Thus, while our single iteration method has a close computational
resemblance to explicit integration, it comes with all the stability
properties of an implicit method.

It is common in computer graphics literature to compare ex-
plicit integration with small time steps against implicit integration
with large time steps. But we are not aware of works that explore
the middle-ground: approximate implicit integration with small
time steps. The contributions of this work are a new approach to
simulation, but more importantly, a study on the effectiveness of de-
creasing the time step size and the investigation of single iteration
implicit integration.

In Table 1 we broadly summarize these trade-offs. Explicit meth-
ods are simple, and can be efficient for moderately stiff problems.
Traditional implicit methods such as backwards Euler are stable, but
have poor energy conservation, and are generally more expensive.
Iterative implicit methods like XPBD are stable, and efficient for
moderate stiffness, however they struggle to achieve high stiffness,
and also suffer from numerical damping. Our proposed method im-
proves the convergence and energy preservation of XPBD through
a simple modification of the underlying algorithm.

2 RELATEDWORK
The use of implicit integration for forward dynamics in computer
graphics dates back to a seminal work by Terzopoulos et al. [1988;
1987]. They utilize the alternating-direction implicit (ADI) method
[Peaceman and Rachford 1955] to solve some of the forces implic-
itly. Since that time, the use of explicit integration became popular
until Baraff and Witkin [1998] proposed a implicit backward Euler
scheme for handling all the forces implicitly, including damping
in cloth simulation. This provides a method that is stable even for
large time step sizes. Desbrun et al. [1999] sped up the computation
by using a predictor-corrector approach to compute an approxi-
mate solution to implicit integration. These approaches, however,
suffer from artificial numerical damping. A second-order backward
difference formula (BDF) was used for cloth simulation in [Choi and
Ko 2002] to reduce this numerical damping. Bridson et al. [2003]

Small Steps in Physics Simulation SCA '19, July 26�28, 2019, Los Angeles, CA, USA

demonstrated the use of mixed implicit/explicit integration (IMEX)
for cloth simulation. They used explicit integration for treating the
elastic force and implicit integration for damping forces, yielding
a central Newmark scheme [Newmark 1959]. Along with the use
of strain limiting, the method is stable for moderate time step size
and does not su�er much from numerical damping. An IMEX type
method was also used for a particle system simulation in [Eber-
hardt et al. 2000]. Fierz et al. [2011] combined the use of explicit
and implicit integrators using element-wise criteria. In all these
works, the use of an implicit integrator that requires a global linear
solver is commonplace.

Variational approaches can also be used to derive integrators
[Kane et al. 2000; Kharevych et al. 2006; Marsden and West 2001]
with excellent energy preservation and controlled damping. De-
pending on the quadrature rule used for converting the continuous
Langrangian to a discrete version, one can arrive at explicit or im-
plicit integration of varying orders of accuracy. While energy is
stable, the resulting animation can still oscillate and produce un-
natural high frequency vibration. The trade-o�s between explicit
and implicit integration still apply. Another interesting alternative
is an exponential integrator [Michels et al. 2014] that combines an
analytic solution of the linear part of the ODE with a numerical
method for the nonlinear parts. However, as with all integrators
stability is only guaranteed in the linear regime.

Projective Dynamics [Bouaziz et al. 2014] produces impressive
real time simulation results by combining local and global solves.
Recently Dinev et al. [2018] proposed an energy control strategy
for Projective Dynamics by mixing implicit midpoint with either
forward Euler or Backward Euler. Nonetheless, the global solve step
needs to pre-factorize the system matrix to be fast, which prevents
simulated meshes from changing topology at runtime, for example.

Asynchronous integrators [Lew et al. 2003; Thomaszewski et al.
2008] and contact handling [Harmon et al. 2009; Zhao et al. 2016] al-
low for varying the time step over the simulation domain. However,
the required computation can �uctuate greatly over time, which is
not desirable in real-time simulations.

The usefulness of a single Newton solver step over explicit in-
tegration was also reported in [Gast et al. 2015], but they did not
explore utilizing this observation further. The idea of using the
predicted state in the next time step for force computation similar
to an implicit integrator is also used in the context of PD controller
in [Tan et al. 2011], resulting in a more stable simulation.

3 TIME INTEGRATION
We write our equations of motion using an implicit position-level
time discretization as follows:

M¹xn+1 � ~xº � r C¹xn+1ºT � n+1 = 0 (1)

C¹xn+1º + ~� � n+1 = 0: (2)

HereM is the system mass matrix andxn+1 is the system state
at the end of thenth time step.C is a vector of constraint functions,
r C it's gradient with respect to system coordinates, and� n+1 the
associated Lagrange multipliers. Constraints are regularized with
a compliance matrix~� that results from factorizing a quadratic
energy potential [Macklin et al. 2016]. The predicted or inertial

position ~x is obtained by an explicit integration of external forces:

~x (xn + � tvn + � t2M� 1fext ¹xn º: (3)

Examining equation(3), we make the observation that the e�ect
of external forces on positions is proportional to� t2. This is due
to the discretization of a second order di�erential equation, and it
has a strong in�uence on the error committed in a single step. For
example, halving the time step will result in a quarter of the position
error, and so on. This simple fact is what motivates our method,
and makes smaller time steps so e�ective at reducing positional
error, as we show in Section 6.

Algorithm 1 Substep XPBD simulation loop

1: perform collision detection usingxn , vn

2: � ts (
� t f

nsteps

3: while n < nsteps do
4: predict position~x (xn + � tsvn + � t2

sM� 1fext ¹xn º
5: for all constraints do
6: compute� � using Eq (7)
7: compute� x using Eq (4)
8: update� n+1 (� � (optional)
9: updatexn+1 (� x + ~x

10: end for
11: update velocitiesvn+1 (1

� ts

�
xn+1 � xn �

12: n (n + 1
13: end while
14:

4 CONSTRAINT SOLVE
To enforce the constraints on the system coordinates we use XPBD
[Macklin et al. 2016] which performs a position projection for a
constraint with indexi as follows,

� x = M� 1r Ci ¹xºT � � i : (4)
Where the associated Lagrange multiplier increment is given by,

� � i =
� Ci ¹xº � ~� i � i

r Ci M� 1r CT
i + ~� i

: (5)

Position-based dynamics would typically repeat this update mul-
tiple times per-constraint in a Gauss-Seidel or Jacobi fashion. Our
idea is to instead divide the whole frame's time step� t f into n
substeps,

� ts =
� t f

nsteps
; (6)

and then perform a single constraint iteration for that substep.
This can be thought of as an approximate, or inexact implicit solve
for each substep. However, by dividing the time-step we bene�t
from the dependence of position error on� t2 in the discrete equa-
tions of motion.

Since we perform a single iteration per-substep and the initial
Lagrange multiplier is always zero, the numerator in(5), can be
simpli�ed as follows:

� � i =
� Ci ¹xº

r Ci M� 1r CT
i + ~� i

: (7)

	Abstract
	1 Introduction
	2 Related Work
	3 Time Integration
	4 Constraint Solve
	4.1 Damping
	4.2 Collision Detection
	4.3 Contact
	4.4 Friction

	5 Comparison to Explicit Methods
	6 Results
	6.1 Hanging Chain
	6.2 Cloth
	6.3 FEM
	6.4 Fluids
	6.5 Rigid Bodies

	7 Limitations and Future Work
	8 Conclusions
	References

