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ABSTRACT
In this paper we re-examine the idea that implicit integrators with
large time steps offer the best stability/performance trade-off for
stiff systems. We make the surprising observation that performing
a single large time step with n constraint solver iterations is less
effective than computing n smaller time steps, each with a single
constraint solver iteration. Based on this observation, our approach
is to split every visual time step into n substeps of length ∆t/n and
to perform a single iteration of extended position-based dynamics
(XPBD) in each such substep. When compared to a traditional
implicit integrator with large time steps we find constraint error and
damping are significantly reduced. When compared to an explicit
integrator we find that our method is more stable and robust for a
wider range of stiffness parameters. This result holds even when
compared against more sophisticated implicit solvers based on
Krylov methods. Our method is straightforward to implement, and
is not sensitive to matrix conditioning nor is it to overconstrained
problems.
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Figure 1: High resolution cloth consisting of 150k particles,
and 896k spring constraints draped over a Stanford bunny.
With 1 substep and 30 XPBD iterations the simulation takes
12.4ms/frame but shows visible stretching (left). With 30
substeps, each performing only 1XPBD iteration the simula-
tion takes 13.5ms/frame but shows significantly less stretch-
ing and higher material stiffness (right). In both cases we
have performed collision detection once per-frame.

1 INTRODUCTION
The simulation of physical systems is a challenging problem in
interactive computer graphics. Ideal algorithms should not only
reproduce the underlying physical model, they should be robust
and efficient enough for real-time applications and user interaction.
Many methods exist to evolve a physical system forward in time,
however they can broadly be split into two categories: explicit and
implicit methods.

Explicit time-integration is rarely used in physical simulations
because it is only conditionally stable. This means that the simula-
tion can diverge any time if certain conditions are not met. For this
reason, implicit integrators are often preferred due to their stability.
However, in contrast to explicit integration, where the state of the
next time step can be computed directly from the current state, for
implicit integration a system of non-linear equations must be solved
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at every time step. Typically this is done using a Newton method
that repeatedly linearizes the non-linear system. Each linear sys-
tem is then solved by a global solver such as Conjugate Gradients
(CG) or direct methods, and the solution is used to get closer to the
non-linear one. First order implicit methods introduce numerical
damping, and are often more computationally expensive than ex-
plicit methods. In addition, they may not guarantee a time-bound
on convergence, which makes them less attractive for interactive
applications.

For real-time applications, local iterative relaxation methods
such as Position-based Dynamics (PBD) [Müller et al. 2007] are
popular. Unlike global solvers which treat the system of equations
as a whole, local solvers such as the Projected Gauss-Seidel (PGS)
iteration used in PBD handle each equation individually, one after
the other. These methods are known to be very robust on typical
problems. This is due in part to the fact that during a global solve the
system matrix is frozen, meaning all constraint gradients are held
fixed. This can cause the solution to move far from the constraint
manifold. In contrast, non-linear PGS methods work on the system
of non-linear equations directly. Each constraint projection uses
the current gradients, which minimizes overshooting. In addition,
relaxationmethods are robust for overconstrained systems that pose
a challenge for global linear solvers, which may fail to converge at
all in such scenarios. Furthermore, solving each equation separately
allows PGS to trivially handle unilateral (inequality) constraints.
Here, only constraints which violate the inequality conditions (the
active set) are projected. This set can change in every iteration and
even after each constraint projection, which prevents sticking. To
simulate the two-way coupling of different features like liquids and
rigid bodies, their list of constraints are simply concatenated or
interleaved, allowing fine-grained coupling [Macklin et al. 2014;
Stam 2009].

Despite their advantages, due to their local nature, relaxation
methods propagate error corrections more slowly than if the equa-
tions are solved simultaneously, making them less suitable for stiff
problems. They also suffer from numerical dissipation like tradi-
tional implicit methods. The aim of this project was to increase the
convergence rate and energy preservation of local solvers while
keeping all their advantages. We derived our solution from a rather
surprising observation. There are two ways to increase the accuracy
of a simulation: either decrease the time step size, or increase the
number of solver iterations. Both increase the amount of computa-
tional work that has to be done. Consequently, if we want to keep
the work constant we have to change both. If we decide to increase
the number of solver iterations or the complexity of the solver,
we have to increase the time step size to stay within the computa-
tional budget. On the other hand, if we decide to take smaller time
steps, then we have to decrease the number of solver iterations.
The question we asked was which direction is more effective. Is it
more effective to (a) solve one difficult problem accurately, or (b)
many simpler problems approximately. Since the work of Baraff
et al. [1998], the commonly accepted knowledge in the computer
graphics community has been to prefer large steps and implicit
methods for stiff problems.

However, in our studies we found that (b) is significantly more
effective than (a). In fact, for PGS the optimum lies at the far end of
(b), i.e. taking as many small steps as the time budget allows while

Table 1: Summary of the relative strengths and weaknesses
of each method.

Method Stability Efficiency Simplicity Energy
Semi-Implicit Euler ✓ ✓ ✓
Implicit Euler ✓
XPBD ✓ ✓ ✓
Small Steps ✓ ✓✓ ✓ ✓

performing a single iteration in each step. Based on this observation
we split a time step of size ∆t into n substeps of size ∆t/n and
perform one iteration of Extended Position Based Dynamics (XPBD)
in each substep. The effect of replacing iterations by substeps is so
substantial that one-step XPBD is competitive with sophisticated
global matrix solvers in terms of convergence. Intuitively, a single
pass over the constraints seems hardly enough to yield meaningful
information about forces and torques, but our results show that
this is actually not the case. Indeed, as was shown by Macklin et
al [2016], the first iteration of XPBD is equivalent to the first step
of a Newton solver operating on the backward Euler equations.
Thus, while our single iteration method has a close computational
resemblance to explicit integration, it comes with all the stability
properties of an implicit method.

It is common in computer graphics literature to compare ex-
plicit integration with small time steps against implicit integration
with large time steps. But we are not aware of works that explore
the middle-ground: approximate implicit integration with small
time steps. The contributions of this work are a new approach to
simulation, but more importantly, a study on the effectiveness of de-
creasing the time step size and the investigation of single iteration
implicit integration.

In Table 1 we broadly summarize these trade-offs. Explicit meth-
ods are simple, and can be efficient for moderately stiff problems.
Traditional implicit methods such as backwards Euler are stable, but
have poor energy conservation, and are generally more expensive.
Iterative implicit methods like XPBD are stable, and efficient for
moderate stiffness, however they struggle to achieve high stiffness,
and also suffer from numerical damping. Our proposed method im-
proves the convergence and energy preservation of XPBD through
a simple modification of the underlying algorithm.

2 RELATEDWORK
The use of implicit integration for forward dynamics in computer
graphics dates back to a seminal work by Terzopoulos et al. [1988;
1987]. They utilize the alternating-direction implicit (ADI) method
[Peaceman and Rachford 1955] to solve some of the forces implic-
itly. Since that time, the use of explicit integration became popular
until Baraff and Witkin [1998] proposed a implicit backward Euler
scheme for handling all the forces implicitly, including damping
in cloth simulation. This provides a method that is stable even for
large time step sizes. Desbrun et al. [1999] sped up the computation
by using a predictor-corrector approach to compute an approxi-
mate solution to implicit integration. These approaches, however,
suffer from artificial numerical damping. A second-order backward
difference formula (BDF) was used for cloth simulation in [Choi and
Ko 2002] to reduce this numerical damping. Bridson et al. [2003]
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demonstrated the use of mixed implicit/explicit integration (IMEX)
for cloth simulation. They used explicit integration for treating the
elastic force and implicit integration for damping forces, yielding
a central Newmark scheme [Newmark 1959]. Along with the use
of strain limiting, the method is stable for moderate time step size
and does not suffer much from numerical damping. An IMEX type
method was also used for a particle system simulation in [Eber-
hardt et al. 2000]. Fierz et al. [2011] combined the use of explicit
and implicit integrators using element-wise criteria. In all these
works, the use of an implicit integrator that requires a global linear
solver is commonplace.

Variational approaches can also be used to derive integrators
[Kane et al. 2000; Kharevych et al. 2006; Marsden and West 2001]
with excellent energy preservation and controlled damping. De-
pending on the quadrature rule used for converting the continuous
Langrangian to a discrete version, one can arrive at explicit or im-
plicit integration of varying orders of accuracy. While energy is
stable, the resulting animation can still oscillate and produce un-
natural high frequency vibration. The trade-offs between explicit
and implicit integration still apply. Another interesting alternative
is an exponential integrator [Michels et al. 2014] that combines an
analytic solution of the linear part of the ODE with a numerical
method for the nonlinear parts. However, as with all integrators
stability is only guaranteed in the linear regime.

Projective Dynamics [Bouaziz et al. 2014] produces impressive
real time simulation results by combining local and global solves.
Recently Dinev et al. [2018] proposed an energy control strategy
for Projective Dynamics by mixing implicit midpoint with either
forward Euler or Backward Euler. Nonetheless, the global solve step
needs to pre-factorize the system matrix to be fast, which prevents
simulated meshes from changing topology at runtime, for example.

Asynchronous integrators [Lew et al. 2003; Thomaszewski et al.
2008] and contact handling [Harmon et al. 2009; Zhao et al. 2016] al-
low for varying the time step over the simulation domain. However,
the required computation can fluctuate greatly over time, which is
not desirable in real-time simulations.

The usefulness of a single Newton solver step over explicit in-
tegration was also reported in [Gast et al. 2015], but they did not
explore utilizing this observation further. The idea of using the
predicted state in the next time step for force computation similar
to an implicit integrator is also used in the context of PD controller
in [Tan et al. 2011], resulting in a more stable simulation.

3 TIME INTEGRATION
We write our equations of motion using an implicit position-level
time discretization as follows:

M(xn+1 − x̃) − ∇C(xn+1)T λn+1 = 0 (1)

C(xn+1) + α̃λn+1 = 0. (2)

HereM is the system mass matrix and xn+1 is the system state
at the end of the nth time step. C is a vector of constraint functions,
∇C it’s gradient with respect to system coordinates, and λn+1 the
associated Lagrange multipliers. Constraints are regularized with
a compliance matrix α̃ that results from factorizing a quadratic
energy potential [Macklin et al. 2016]. The predicted or inertial

position x̃ is obtained by an explicit integration of external forces:

x̃⇐ xn + ∆tvn + ∆t2M−1fext (xn ). (3)

Examining equation (3), we make the observation that the effect
of external forces on positions is proportional to ∆t2. This is due
to the discretization of a second order differential equation, and it
has a strong influence on the error committed in a single step. For
example, halving the time step will result in a quarter of the position
error, and so on. This simple fact is what motivates our method,
and makes smaller time steps so effective at reducing positional
error, as we show in Section 6.

Algorithm 1 Substep XPBD simulation loop

1: perform collision detection using xn , vn

2: ∆ts ⇐
∆tf

nsteps
3: while n < nsteps do
4: predict position x̃⇐ xn + ∆tsvn + ∆t2sM−1fext (xn )
5: for all constraints do
6: compute ∆λ using Eq (7)
7: compute ∆x using Eq (4)
8: update λn+1 ⇐ ∆λ (optional)
9: update xn+1 ⇐ ∆x + x̃
10: end for
11: update velocities vn+1 ⇐ 1

∆ts

(
xn+1 − xn

)
12: n ⇐ n + 1
13: end while
14:

4 CONSTRAINT SOLVE
To enforce the constraints on the system coordinates we use XPBD
[Macklin et al. 2016] which performs a position projection for a
constraint with index i as follows,

∆x = M−1∇Ci (x)T ∆λi . (4)
Where the associated Lagrange multiplier increment is given by,

∆λi =
−Ci (x) − α̃iλi
∇CiM−1∇CTi + α̃i

. (5)

Position-based dynamics would typically repeat this update mul-
tiple times per-constraint in a Gauss-Seidel or Jacobi fashion. Our
idea is to instead divide the whole frame’s time step ∆tf into n
substeps,

∆ts =
∆tf

nsteps
, (6)

and then perform a single constraint iteration for that substep.
This can be thought of as an approximate, or inexact implicit solve
for each substep. However, by dividing the time-step we benefit
from the dependence of position error on ∆t2 in the discrete equa-
tions of motion.

Since we perform a single iteration per-substep and the initial
Lagrange multiplier is always zero, the numerator in (5), can be
simplified as follows:

∆λi =
−Ci (x)

∇CiM−1∇CTi + α̃i
. (7)



SCA ’19, July 26–28, 2019, Los Angeles, CA, USA M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and M. Müller

Figure 2: A position-based fluid simulation consisting of
936k particles. Using 10 iterations the fluid shows signifi-
cant compression and highly damped motion. In contrast,
substepping with 10 iterations results in a visibly stiffer
fluid with more dynamic motion.

When using a single iteration per-step it is not required to store the
Lagrange multipliers, however they can be useful to provide force
estimates back to the user. In the results sectionwe demonstrate that
these force estimates remain accurate even when using only a single
iteration per substep (Figure 4). An overview of our simulation loop
is given in Algorithm 1.

4.1 Damping
Reducing the time step reduces the amount of numerical dissipation
in the integrator. For this reason it becomes important to explicitly
include damping in our constraint model. We do this using the
XPBD formulation:

∆λi =
−Ci (x) − γi∇Ci (x − xn )
(1 + γi )∇CiM−1∇CTi + α̃i

. (8)

Given β̃i = ∆t2s βi , a time step scaled damping parameter for

constraint i , we then define γi =
α̃i β̃i
∆ts . We refer the reader to

publications by Macklin et al. [2016], and Servin et al. [2006] for
the derivation.

4.2 Collision Detection
Decreasing time step size typically improves the accuracy of colli-
sion detection. However, performing collision detection every time
step adds a significant computational overhead. A key idea that
makes our substepping approach feasible is to amortize this cost
by performing collision detection once per-frame and re-using the
contact set over multiple substeps. To do this, we first predict the
state of the system using the current velocity and the whole frame’s
time step, ∆tf . We use this trajectory to detect potential collisions
and generate contact constraints accordingly.
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Figure 3: Left: The stretch in a 1D chain of particles con-
nected by distance constraints hanging under gravity. Sub-
steps (red) are significantly more effective at reducing
stretch than the equivalent number of iterations (blue).
Right: The same test with a large mass (105kg) attached to
the bottom of the chain, emphasizing the effect.
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Figure 4: Left: We plot the residual error at frame 1000 for
varying iteration and substep counts. We see approximately
two orders ofmagnitude lower error for the equivalent num-
ber of substeps. Right: We plot the force estimate (Lagrange
multiplier) for the constraint at the top of the chain over
time. The true value is 190N. Surprisingly, even performing
a single iteration per-substep provides accurate force esti-
mates.

Performing one collision detection phase per-frame could result
in missed collisions due to changing trajectories. Missed collisions
would then be processed the next frame, however to minimize this
effect we generate contacts between features that comewithin some
user-controlled margin distance. This could be further addressed by
updating the contact set in a manner similar to constraint manifold
refinement (CMR) [Otaduy et al. 2009].

4.3 Contact
We treat contacts as inelastic and prevent interpenetration between
bodies through inequality constraints of the form

Cn (x) = nT [a(x) − b(x)] ≥ 0. (9)

Here a and b are points on a rigid or deformable body and n ∈ R3
is the contact plane normal. The contact normal may be fixed in
world space, or may itself be a function of the system coordinates.

One artifact of reducing the time step is that any initial pene-
tration error between bodies will be converted to large separating
velocities by our implicit solve. A solution to this problem is the pre-
stabilization pass proposed by Macklin et al. [2014], which removes
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initial overlap by projecting out bodies in a kinematic fashion. Here
we propose a simpler method specifically for contacts.

Given a contact with an initial overlap d0 at the start of the time
step, an implicit solver aims to find a velocity that will completely
remove this penetration over the course of one substep. This leads to
a separating velocity ofvsep = d0

∆ts . As the time step is reduced, sep-
arating velocities are increased, leading to artificial elastic popping
artifacts. To avoid such excessive velocities we limit the maximum
depenetration speed in any given substep by modifying the contact
constraint as follows:

Cn (x) = nT [a(x) − b(x)] +max(d0 −vmax∆ts , 0) ≥ 0. (10)

Here vmax is the maximum separating speed that we wish to
allow in one substep. When vmax is large we allow the bodies to
separate explosively. Conversely, if vmax is small, then penetrating
bodies will be gently separated. This is similar to the clamped
normal impulses used by Bridson et al. [2003]. However we note
that when there is no initial penetration, i.e.:d0 = 0, our formulation
automatically treats contacts as hard inequality constraints.

4.4 Friction
We formulate frictional attachment constraints as follows:

Cf (x) = DT [a(x) − b(x)] = 0 (11)

where D is a 1-2 dimensional frictional basis matrix. To satisfy
Coulomb’s law that the frictional force should be limited by the
normal force we clamp the frictional Lagrange multiplier updates
as follows:

∆λf ← min(µ∆λn ,∆λf ) (12)

where λn , λf are the normal and frictional Lagrange multipli-
ers, and µ the friction coefficient. This projection implicitly cap-
tures stick/slip transitions and ensures the frictional force is always
bounded by the scaled normal force.

5 COMPARISON TO EXPLICIT METHODS
Computationally, our method bears a lot of resemblance to an ex-
plicit time-integration scheme. However, because we derive our
method from an implicit time-discretization we obtain the benefit
of stability even with large stiffness values. This robustness is cru-
cial for real-time or interactive applications, and makes authoring
simulation assets considerably easier. Even with infinite stiffness
(zero compliance) our method is stable, and will behave as stiff as
possible given the total number of substeps.

6 RESULTS
For our 3D examples we have implemented our method in CUDA
and run it on an NVIDIA RTX 2080 Ti GPU. We use a parallel Jacobi
iteration over constraints. Since our focus is on real-time simulation
we have used a fixed iteration count for most examples. This is
common in interactive settings where computational budgets are
fixed and should not vary from frame to frame.

6.1 Hanging Chain
We use a 1D example to analyze the effect of time step size on
constraint error. Specifically we look at a chain of 20 particles each

Figure 5: Simple hanging sheets of cloth with stiffness of
k = 107N/m. Left: XPBD 1 substep, 40 iterations, Middle:
XPBD 40 substeps, 1 iteration, Right: Semi-Implicit Euler 40
substeps. Unlike explicitmethods our approach remains sta-
ble even for high stiffness coefficients.
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Figure 6: A plot of the system energy (gravitational + ki-
netic) for the hanging cloth example. Reducing the time-
step significantly reduces damping due to the implicit time-
discretization, resulting in more dynamic motion.

with massm = 1kg, connected by inextensible distance constraints
with rest length of l = 0.01m hanging under gravity. We use the
position of the bottom particle as a measure of error and plot its
value in Figure 3. A modification of this experiment is to attach
a large mass to the bottom of the chain, which is a stress test for
most iterative methods. We attach a particle such that the total
mass ratio is 1 : 100000. In this case, the maximum error with 100
iterations is e = 322.1m, the equivalent error with 100 substeps is
e = 3.2m. This two orders of magnitude reduction in error is in
line with our prediction of quadratic error reduction with respect
to time step size.

6.2 Cloth
We test ourmethod on the common scenario of a piece of cloth hang-
ing under gravity. Iterative solvers typically struggle to maintain
stiffness and reduce stretching. Many methods have been proposed
to address this specific problem [Goldenthal et al. 2007; Kim et al.
2012; Müller 2008; Müller et al. 2012], often with non-physical ar-
tifacts. In Figure 5 we see the effect of substeps compared with
iterations on the hanging cloth. Despite being computationally



SCA ’19, July 26–28, 2019, Los Angeles, CA, USA M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and M. Müller

Figure 7: A cantilever beam consisting of 12800 tetrahedral
FEM elements with Young’s modulus of 107Pa and Pois-
son’s ratio of 0.45. Left: XPBD 1 substep, 100 iterations, Mid-
dle: XPBD 100 substeps, 1 iteration, Right: Backwards Euler
(PCG): 1 substep, 100 iterations. Timings for each method
are 4ms, 6ms, and 12ms per-frame respectively. Substepping
provides a stiffness comparable to more complex methods
with less damping, and lower computational cost.

similar, using smaller time steps shows significantly less stretch-
ing, and better energy preservation compared to higher iteration
counts (Figure 6). In addition, we compare this scenario to a simple
semi-implicit integration scheme which evaluates spring forces
explicitly. We find our approximate implicit scheme to be robust
for large stiffness values, even in the limit of infinite stiffness (zero
compliance), while semi-implicit Euler quickly diverges.

From a performance perspective, the amount of work done per-
iteration in all approaches is quite similar. There is a small overhead
to performing time-integration per-substep, but this is relatively
small compared to the work done during constraint solving. For
the cloth example per-frame simulation time is 1.8ms for XPBD
with 40 iterations, 2.4ms for XPBD with 40 substeps, and 2.5ms for
semi-implicit Euler.

6.3 FEM
To test the effect of time step size on deformable bodies we simulate
a cantilever beam hanging under gravity. The beam consists of
12800 tetrahedral FEM elements and a linear constitutive model
with Young’s modulus ofY = 107Pa, Poisson’s ratio of µ = 0.45, and
a density of ρ = 1000kg/m3. As illustrated in Figure 7, when using
large time steps and many iterations we see significant deformation
causing the beam to collapse to the ground. In contrast, with the
equivalent number of substeps the beam supports itself. We also
compare this example to a linearly implicit Newton method with a
Krylov PCG solver (using a diagonal Jacobi preconditioner) applied
directly to equations (1)-(2). Our substep method achieves similar
stiffness with significantly less numerical damping. The per-frame
simulation time is 4ms for 100 XPBD iterations, 6ms for 100 XPBD
substeps, and 12ms for 100 PCG iterations.

6.4 Fluids
We test our approach on a particle-based fluid simulation using
Position-based Fluids (PBF) [Macklin and Müller 2013]. In the ac-
companying videowe demonstrate the effectiveness of sub-stepping
in a 2D fluid scene. The scene is a stress case for any particle based
fluid solver because of the water depth (over a hundred particle
layers) and the velocity of the incoming particles. To make it stable

Figure 8: A chain of rigid bodies with a suspended weight
creating a mass ratio of 1:1000. Left: 1 substep and 100 iter-
ations takes 4ms/frame and shows visible joint separation.
Middle: 1 substep and 500 iterations takes 17ms/frame and
still shows visible stretching. Right: 100 substeps and 1 iter-
ation takes 6ms/frame and the chain is stiff and stable.

Figure 9: A heavy box resting on a stack of capsules. With 1
substep and 100 iterations the stack quickly collapses (left).
With 100 substeps and 1 iteration the stack remains stable
(right). In both examples we have performed collision detec-
tion only once per frame.

we restrict the particles to not move farther than 0.3 times their
radius per time step (CFL condition). With sub-stepping, the time
steps are so small that no visual damping is introduced. There are
no particle crossings and the fluid comes to complete rest. With
large time steps, a large amount of damping and instabilities are
introduced. Relaxing the CFL condition yields disturbing particle
crossings. In Figure 2 we create a 3D column of fluid with rest
density ρ = 1000kg/m3 consisting of 936k particles, and simulate
its collapse under gravity inside a container. Using 10 iterations of
the PBF density constraint solver fails to enforce incompressibility,
resulting in significant volume loss. Using 10 substeps, each with a
single PBF iteration yields a stiffer response, and allows us to use a
larger CFL condition, resulting in more dynamic motion.

6.5 Rigid Bodies
In Figure 8 we examine the effect of substeps on a heavy weight
being suspended by jointed rigid bodies. We observe a similar effect
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to that seen in the cloth example, with reduced stretching, and more
robust handling of angular degrees of freedom.

In Figure 9 we test a rigid body contact example with a large
mass being held up by a stack of rigid body capsules. This is a
stress test for iterative methods. With substeps we see the stack is
stiff and remains stable with little interpenetration. On the other
hand, using one substep andmultiple iterations results in significant
interpenetration, quickly leading to the stack collapsing.

7 LIMITATIONS AND FUTUREWORK
We have demonstrated that time step size reduction is an effective
method for reducing positional error in dynamics. However, the
same is not true for velocity dependent terms, e.g.: damping forces.
This is explained by the fact that velocity error is proportional
only to ∆t in our equations of motion. For many scenarios error on
velocity is more acceptable, however for situations where this is
not true, e.g.: highly viscous materials, it may be advisable to use
an accurate implicit solve on the velocity terms as a post-process
after positional constraints are solved.

Our method also works with Gauss-Seidel iteration, however, as
with most Gauss-Seidel methods the residual has some dependence
on the iteration order. In practice we have not found this to be a
significant issue, however a symmetric successive over-relaxation
scheme (SSOR) could also be applied to mitigate this effect.

Another issue we have observed is that due to the ∆t2 term we
can run into the limits of single precision floating point after some
number of substeps. This depends on the magnitude of the system
coordinates, e.g.: adding a small position delta to a large coordinate
may result in no change in a finite representation. All our examples
have used 32-bit floating point, however for higher iteration counts
using a double precision representation may be necessary.

8 CONCLUSIONS
In this work we found that using many constraint solver iterations
over large time steps to be inferior when compared to our approx-
imate implicit integration over small time steps. Our method has
a low computational overhead, but provides a dramatic improve-
ment in achievable stiffness. This is a direct result of the positional
error from external forces being dependent on the squared time
step ∆t2. This relationship means reducing time step size gives
quadratic error reduction with low complexity, making it an attrac-
tive alternative to traditional implicit integrators. Our result holds
over a diverse range of multibody and deformable body scenarios,
and given its simplicity we believe it will be a valuable tool for
practitioners.
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