
A Robust Method to Extract the Rotational Part of Deformations

Matthias Müller1 Jan Bender2 Nuttapong Chentanez1 Miles Macklin1

1NVIDIA Physics Research 2 RWTH Aachen University

Figure 1: The basic idea behind our method. The red arrows show the column vectors of an input matrix A and the green arrows the column
vectors of the extracted rotation matrix R. The optimal rotation matrix is in an equilibrium state in which the momenta on all axes (red
triangles) cancel out.

Abstract

We present a novel algorithm to extract the rotational part of an ar-
bitrary 3× 3 matrix. This problem lies at the core of two popular
simulation methods in computer graphics, the co-rotational Finite
Element Method and Shape Matching techniques. In contrast to the
traditional method based on polar decomposition, degenerate con-
figurations and inversions are handled robustly and do not have to
be treated in a special way. In addition, our method can be im-
plemented with only a few lines of code without branches which
makes it particularly well suited for GPU-based applications. We
demonstrate the robustness, coherence and efficiency of our method
by comparing it to stabilized polar decomposition in several simu-
lation scenarios.

Keywords: rotation, shape matching, co-rotational FEM, polar
decomposition

Concepts: •Computing methodologies→ Physical simulation;

1 Introduction

There are two main challenges when simulating deformable ob-
jects, namely handling degenerate configurations and inversions.
In the context of the co-rotational Finite Element Method [Müller
and Gross 2004; Hauth and Strasser 2004] and simulation meth-
ods based on shape matching [Müller et al. 2005] these challenges
correspond to the problem of extracting a proper rotation matrix
from an arbitrary deformation gradient. More formally: Let A be
an arbitrary 3×3 matrix. Find an ortho-normal 3×3 matrix R with
det(R) = +1 which minimizes the Frobenius-norm ||A−R||2F .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
MiG ’16,, October 10-12, 2016, Burlingame, CA, USA
ISBN: 978-1-4503-4592-7/16/10
DOI: http://dx.doi.org/10.1145/2994258.2994269

This problem known as the Wahba problem has been studied over
several decades since the early work of Grace Wahba [1965]. It was
first studied in connection with the task of deriving the orientation
of a space craft from a set of measured direction vectors toward
astronomical objects.

The most popular approach to solving this problem has been to ex-
tract a rotation matrix from A via polar decomposition A = RU and
was first proposed by Farrell et al. [1966]. The problem with this
approach is that the polar decomposition is not defined if A is singu-
lar and yields a reflecting matrix R with det(R) =−1 if det(A)< 0.
A variety of ideas have been proposed to fix R via reflecting it along
carefully chosen directions.

Another family of methods determine R via a constrained optimiza-
tion problem minimizing the Frobenius norm between R and A un-
der the constraint det(R) = +1. When R is parametrized by a qua-
terion q, the optimization problem is reduced to finding the largest
eigenvector of a 4× 4 linear system. Solving a 4× 4 eigenvalue
problem for each element at every time step can easily become the
bottle neck of a simulation, however.

In this paper we propose a new method that is both efficient and
robust for any matrix A.

2 Related Work

One of the simplest ways to extract a rotation matrix R from an
arbitrary matrix A is using Gram-Schmidt orthogonalization. Here,
the first column of R is set to the first column of A and normalized.
The second column of R is set to the second column of A minus
its projection along the first column and normalized. Finally, the
third column is set to be the cross product of the first two. The
resulting rotation matrix is ortho-normal with determinant +1 by
construction. It also works for singular matrices as long as two
directions are determined because the third column is derived from
the first two directly. The main disadvantage of this method is the
fact that the result depends on the order in which the columns of
A are processed. This bias introduces ghost forces in simulations
because momentum is not conserved in general.

Before we turn to polar decomposition which is it the most pop-
ular approach in computer graphics, we will mention a few other

http://dx.doi.org/10.1145/2994258.2994269

methods that have been used in other fields.

Wessner [1966] derived the formula R =
(
AT)−1 (AT A

) 1
2 to ex-

tract a rotation matrix from A. This formula can be transformed into
the form R = A(AT A)−

1
2 which is the common way of computing

the polar decomposition as we will describe and discuss below.

Higham [1986] proposed an iterative solution. The iteration is ini-
tialized by setting R← A. During the iteration the intermediate
solution is improved by evaluating R← 1

2
(
R+R−T). This pro-

cess converges to an R with det(R) = −1 if det(A) < 0 and only
works for a non-singular A.

Davenport’s q-method [Markley and Mortari 1999] introduced the
idea of parametrizing R with a quaternion q. As described in the in-
troduction, the minimizing quaternion can be determined by finding
the eigenvector corresponding to the largest eigenvalue of a 4× 4
linear system. The need to solve a 4×4 eigenvalue problem makes
this approach significantly slower than other methods.

The most popular methods to extract rotations from deformation
gradients in computer graphics are based on the polar decomposi-
tion of the deformation gradient A = RS. Here A is decomposed
into a rotation matrix R and a symmetric matrix S. The same
rotation matrix is obtained with the singular value decomposition
(SVD) which splits A into the three parts A = UDVT by choosing
R = UVT . In this decomposition, the diagonal matrix D contains
the singular values of A on its diagonal. Inversions and singularities
manifest themselves as negative or zero singular values and can be
fixed by manipulating the corresponding column vectors in U and
V.

Irving et al. [2004] were among the first in computer graphics to
address the inversion problem. In case of an inversion, they iden-
tify the smallest singular value and invert the corresponding col-
umn vector in the resulting rotation matrix. The idea is to reflect
an element along the minimal inversion direction. Schmedding et
al.[2008] reflect the element in the direction for which vertices have
to travel the shortest distance which, as they note, does not neces-
sarily correspond to the minimal inversion direction, especially for
badly shaped elements. As in continuous collision detection Civit-
Flores and Susin [2012] determine the point in time when an ele-
ment inverts by solving a cubic equation to choose how to undo the
inversion. Their paper contains an excellent overview and analysis
of existing methods for handling degenerate elements and inver-
sions.

3 The Method

We start with stating the problem we want to solve again: Let A be
an arbitrary 3×3 matrix. Our goal is to find a rotation matrix that is
as close as possible to A or more technically, an ortho-normal 3×3
matrix R with det(R) = +1 which minimizes the Frobenius-norm
F(R) = ||A−R||2.

Our novel idea is simple and effective: Instead of solving for R
directly we assume that we already have an approximation either
from the previous time step of a simulation or from the previous
step of an iterative solve. We are looking for an update rule of the
form

R← exp(ω) R, (1)

where exp(ω) is the rotation matrix with axis ω/|ω| and angle |ω|
also known as the exponential map. The exponential map is guar-
anteed to be a proper rotation matrix, i.e. to be orthonormal with
determinant +1 even for ω = 0 in which case it assumes the iden-
tity. Therefore, if R is a proper rotation matrix, this property is
conserved by the update.

The first question we need to answer is how to choose the direction
of ω . The best choice is the one for which the Frobenius norm
decreases the most. To find this direction we interpret our problem
in a physical way. Let a1,a2,a3 be the column vectors of A and
r1,r2,r3 be the column vectors of R. The matrix A is fixed and can
be interpreted as a static object. The matrix R is only allowed to
rotate about the origin and can therefore be interpreted as a rigid
body. Since we want to minimize F we define the energy

EF =
1
2

F(R) =
1
2 ∑

i
(ri−ai)

2. (2)

We will choose ω to be the axis about which the rigid body R gets
accelerated under the energy EF . The forces acting at the tips of the
axes of R are

fi =−
∂EF

∂ri
= ai− ri. (3)

The total torque acting on R due these forces is

τ = ∑
i

ri× (ai− ri) = ∑
i

ri×ai. (4)

Therefore, we choose ω = ατ for some scalar α . The introduction
of τ allows a new interpretation of the matrix R that minimizes the
Frobenius norm and the matrix R obtained by a polar decomposi-
tion of A. In the appendices A and B we show that τ = 0 for both
which means they can be interpreted to be the matrices that are in
an equilibrium state w.r.t. EF (see Figure 1).

The second questions is how to choose α . We first look at a single
pair ai and ri. If we choose ω = ai× ri then the magnitude of the
rotation |ω| is |ai||ri|sinφ , where φ is the angle between the two
vectors. However, our goal is to align ai and ri to make τ = 0
which is accomplished if |ω|= φ .

By instead choosing

ω =
ai× ri

ai · ri
(5)

we get

|ω|= |ai||ri|sinφ

|ai||ri|cosφ
= tanφ ≈ φ (6)

for small φs. This yields our final iterative formula

R← exp
(

∑i ri×ai

|∑i ri ·ai|+ ε

)
R , (7)

where we choose the safety parameter ε = 10−9 in our examples. It
is important to use the absolute value in the denominator to not flip
the direction of the torque. Although the formula is very simple it
has a number of important features. In contrast to most existing ap-
proaches, it robustly handles a rank deficient matrix A. In this case
it carries over the missing information from the previous rotation
matrix R which is the correct solution during a simulation. This
is because if an ai is zero, the corresponding torque component is
zero too and the orientation of R along that direction untouched. In
the extreme case of A = 0, the total torque is zero and R remains
unchanged. If a1 is the only non-zero axis, our method correctly
rotates R in the plane spawned by r1 and a1 to align ri with a1. The
determinant of R is guaranteed to remain +1 even if det(A) < 0
because we treat R as a rigid body. In addition, the use of the previ-
ous rotation makes our method particularly efficient for simulations
because warm starting is built into it.

Appendix D lists the source code of our method in C++. The Eigen
library (eigen.tuxfamily.org) is used to perform vector and matrix

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

1000k

1 2 3 4 5 6 7 8 9

n
u

m
b

er
 o

f
te

st
 c

as
es

number of solver iterations

Figure 2: Distribution of the number of solver iterations needed to
reach F < 0.001 starting with random orientation matrices R and
with A = I (blue). Restricting the Euler angles of R to [−π/3,π/3]
yields the distribution shown by the orange bars.

operations. For practical reasons we represent R by a quaternion q.
A comparison with the source code to implement Irving et al. [Irv-
ing et al. 2004] shown in Appendix C illustrates how much simpler
the implementation of our method is. Our procedure takes as input
the solution of the previous step. If such a solution is not available,
we recommend to start with q = Quat(A)/|Quat(A)|.

We have left out one important question, namely whether there are
equilibria for which the torque τ is zero but for which F is not
minimized, but instead maximized. Such equilibria can indeed be
constructed. It is easy to verify that for A = I and

R =

 0 1 0
1 0 0
0 0 −1

 (8)

the torque is zero. Therefore, if the iteration is started with this
R it will not converge to the true solution R = I which minimizes
the Frobenius norm. Fortunately, a small random perturbation will
almost always get us out of the maxima, unless it happens to be
along a ridge/plane of the maxima.

Figure 2 shows the results of an experiment in which we set A = I
and run our method a million times each time with a different, ran-
domly chosen starting matrix R. Our method always converged to
the true solution R = I which is expected if the equilibria form a
null space. In this case, the probability to hit an equilibrium by
chance is theoretically zero and numerically very small. The fact
that our method never converged to a non-minimizing equilibrium
in our examples is also a strong indication that the maxima is very
rare. If one wishes to guarantee to avoid the maxima, when τ = 0,
one can add a small random rotation to R and check if the Frobe-
nius norm increases or not. If it decreases, one should restart the
iterations from that perturbed R. If it increases, then rejects the ro-
tation and you are done. If it stays the same, keeps adding another
random rotation until the norm changes. One can also randomly
perturbed R by a small ε at the beginning of the solve to get out of
the maxima, if it starts being in one. In our simulations, maximum
equilibria were never encountered, so we don’t do these checks nor
perturbation in our examples.

4 Results

We also used the experiment described in the last section to test
the performance of our method. The blue bars in Figure 2 show the

Figure 3: A tetrahedron is inverted by moving the green vertex to
the yellow position.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-1 -0.5 0 0.5 1

an
gu

la
r

di
st

an
ce

 (
ra

di
an

)
det(F)

5 iterations
10 iterations
20 iterations

Figure 4: Angular distance of our solution and the one of Irving et
al. [2004] for different numbers of iteration. The determinant of the
deformation gradient F is shown on the x-axis. A tetrahedron was
deformed from its rest configuration (det(F) = 1) over a degenerate
state (det(F) = 0) to a totally inverted configuration (det(F) =−1).

distribution of the number of solver iterations needed to converge to
F < 0.001 when starting with randomly chosen rotation matrices.
To emulate a warm start we restricted the Euler angles of R to the
range R to [−π/3,π/3]. In this case, the method almost always
converges after 3 iterations as the orange bars show.

We now compare our novel method with the approach of Irving et
al. [2004].

First, we demonstrate that our simple algorithm converges to the
same result as the method of Irving et al. For the comparison we
deform a tetrahedron to an inverted state. Three points of the tetra-
hedron are fixed and one moves on the x-axis from the rest configu-
ration over a degenerate state to a completely inverted configuration
(see Figure 3).

Figure 4 shows the angular distance between the resulting rotation
matrices of both methods when using a warm start for our algo-
rithm. When we increase the number of iterations, both methods
converge to the same solution. However, with a low number of iter-
ations we can see that the difference between both methods is larger
around the point where det(F)≈−0.66. The reason for this larger
difference is that at this point the method of Irving et al. has a dis-
continuity [Civit-Flores and Susin 2012]. Since our method only
performs a rotation in each iteration, it requires more iterations to
come to the same result at the discontinuity. Note that the maxi-
mum difference of approximately 0.01 radian at this point is still
low.

Our approach performs better if it is started with a quaternion which
is close to the solution. A comparison of the angular distance of
different start configurations is shown in Figure 5. The best conver-
gence we can see for a warm start of the algorithm with a previous

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

-1 -0.5 0 0.5 1

an
gu

la
r

di
st

an
ce

 (
ra

di
an

)

det(F)

warm start
q=Quat(A)/|Quat(A)|

q=(1 0 0 0)

Figure 5: Angular distance when starting our method with differ-
ent quaternions q. In this comparison we used 10 iterations.

solution q. If such a solution is not available, a better convergence
can be achieved with the quaternion q = Quat(A)/|Quat(A)| which
was recommended in the last section.

We also performed tests where we inverted the tetrahedron twice
by moving two different vertices in inverted configurations. The
results in these tests also converged towards the solution of Irving
et al.

We tested our method in the simulation scenarios shown in Figure
6. The objects are simulated using the clustered shape matching
approach. The clusters and their orientations are visualized as local
coordinate frames. Even though the cluster distributions are sparse,
our method allows the stable simulation of these objects. In Fig-
ure 7 after completely randomizing the vertex locations, the dragon
model recovers its original shape. When using 3 iterations, which
was enough in our simulation experiments to achieve good results
without any visible artifacts, our method was 60 % - 80 % faster
than the approach of Irving et al. Note that the usage of an opti-
mized SVD implementation like the one of McAdams et al. [2011]
could improve the performance of Irving’s method so the speedup
in this case would be smaller. However, a GPU implementation of
such an optimized SVD is far more complex than the one of our
method.

5 Conclusion

We have presented a new method to extract the rotational part of
an arbitrary 3× 3-dimensional matrix. The resulting algorithm is
simple and short without branches and therefore ideal for the use
on GPUs. It is also faster than previous approaches. We have not
tested the method in the context of co-rotational FEM yet but ex-
pect it to perform equally well since it is independent of the actual
application.

References

CIVIT-FLORES, O., AND SUSIN, A. 2012. Robust Treatment of
Degenerate Elements in Interactive Corotational FEM Simula-
tions. Computer Graphics Forum 33, 6.

FARRELL, J. L., AND STUELPNAGEL, J. C. 1966. A least squares
estimate of spacecraft attitude. SIAM Review 8, 3, 384.

HAUTH, M., AND STRASSER, W. 2004. Corotational simulation
of deformable solids. Journal of WSCG 12, 2–9.

HIGHAM, N. 1986. Computing the polar decomposition with ap-
plications. SIAM J. Sci. Stat. Comput. 7, 4, 1160–1174.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite
elements for robust simulation of large deformation. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
Eurographics Association, 131–140.

MARKLEY, F. L., AND MORTARI, D. 1999. How to estimate
attitude from vector observations. In AAS/AIAA Astrodynamics
Specialist Conference, vol. 103, 1979–1996.

MCADAMS, A., SELLE, A., TAMSTORF, R., TERAN, J., AND
SIFAKIS, E. 2011. Computing the singular value decomposition
of 3x3 matrices with minimal branching and elementary floating
point operations. Tech. Rep. TR1690, University of Wisconsin.

MÜLLER, M., AND GROSS, M. 2004. Interactive virtual materials.
In Graphics Interface, 239–246.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. In ACM SIGGRAPH 2005 Papers, ACM, 471–478.

SCHMEDDING, R., AND TESCHNER, M. 2008. Inversion handling
for stable deformation modeling. The Visual Computer 24, 7,
625–633.

WAHBA, G. 1965. A least squares estimate of spacecraft attitude.
SIAM Review 7, 3, 409.

WESSNER, R. 1966. A least squares estimate of spacecraft attitude.
SIAM Review 8, 3, 386.

A Equilibrium and the Frobenius Norm

For the following proofs we define a1, a2 and a3 to be the column
vectors of A and r1, r2 and r3 to be the column vectors of R.

We show that if the Frobenius norm is minimized (or maximized)
τ = 0, i.e. the rotation matrix R is in an equilibrium state. First we
have

F = ∑
i
(ri−ai)

2. (9)

If R minimizes or maximizes the Frobenius norm, the derivative
of the Frobenius norm is zero in all directions. So we choose an
arbitrary rotation axis ω . The rotation about ω by an angle φ can be
linearized for a small φ and we get the angle dependent Frobenius
norm

F(φ) = ∑
i
(ri +φω× ri−ai)

2 (10)

and the derivative

∂F(φ)

∂φ
= 2 ∑

i
(ri +φω× ri−ai) ·ω× ri. (11)

If ∂F(φ)
∂φ

= 0 for φ = 0 then

∑
i
(ri−ai) ·ω× ri =

(
∑

i
ri×ai

)
·ω = 0 (12)

for an arbitrary vector ω . Therefore, τ = ∑i ri× ai = 0 if R mini-
mizes (or maximizes) the Frobenius norm.

Next, we show that if τ = 0, then the Frobenius norm is minimized
(or maximized). For an arbitrary rotation axis ω with angle θ , we
have

∂F(φ)

∂φ
= 2 ∑

i
(ri +φω× ri−ai) ·ω× ri. (13)

Figure 6: Various objects simulated with the clustered shape matching approach. The clusters and their orientations are shown as local
frames. Our method stably extracts the rotational part of the deformation in sparse clusters distributions.

Figure 7: After randomizing a complex model, our method is able
to fully recover the original shape.

At φ = 0, we have ∂F(φ)
∂φ

= ∑i (ri−ai) ·ω× ri = (∑i ri×ai) ·ω =

τ ·ω = 0.

Therefore, τ = 0, iff Frobenius norm is minimized (or maximized).
�

B Equilibrium and the Polar Decomposition

Here we show that if A = RP with A orthogonal and P symmetric
positive semi-definite then τ = r1×a1 + r2×a2 + r3×a3 = 0.

First, since RT A = P, we have ri · a j = pi, j. Moreover, since R is
orthogonal

±r3 = r1× r2

∓r2 = r1× r3,

choosing either all upper signs or all lower signs. Now

r1 · τ = r1 · (r1×a1 + r2×a2 + r3×a3)

= 0+ r1 · (r2×a2)+ r1 · (r3×a3)

= a2 · (r1× r2)+a3 · (r1× r3)

= a2 · (±r3)+a3 · (∓r2)

=±p3,2 +∓p2,3

=±p3,2 +∓p3,2 (P symmetric)
= 0

and similarly r2 · τ = 0 and r3 · τ = 0. It follows that τ = 0.�

C Source Code - Irving et al.

void jacobiRotate(Matrix3d &A, Matrix3d &R, int p, int q)
{

if (A(p, q) == 0.0)
return;

double d = (A(p, p) - A(q, q)) / (2.0*A(p, q));
double t = 1.0 / (fabs(d) + sqrt(d*d + 1.0));
if (d < 0.0)

t = -t;
double c = 1.0 / sqrt(t*t + 1);
double s = t*c;
A(p, p) += t*A(p, q);
A(q, q) -= t*A(p, q);
A(p, q) = A(q, p) = 0.0;

int k;
for (k = 0; k < 3; k++)
{

if (k != p && k != q)
{

double Akp = c*A(k, p) + s*A(k, q);
double Akq = -s*A(k, p) + c*A(k, q);
A(k, p) = A(p, k) = Akp;
A(k, q) = A(q, k) = Akq;

}
}
for (k = 0; k < 3; k++)
{

double Rkp = c*R(k, p) + s*R(k, q);
double Rkq = -s*R(k, p) + c*R(k, q);
R(k, p) = Rkp;
R(k, q) = Rkq;

}
}

void eigenDecomposition(const Matrix3d &A, Matrix3d &
eigenVecs, Vector3d &eigenVals)

{
const int numJacobiIterations = 10;
const double epsilon = 1e-15;

Matrix3d D = A;

eigenVecs.setIdentity();
int iter = 0;
while (iter < numJacobiIterations)
{

int p, q;
double a, max;
max = fabs(D(0, 1));
p = 0;
q = 1;
a = fabs(D(0, 2));
if (a > max)
{

p = 0;
q = 2;
max = a;

}
a = fabs(D(1, 2));
if (a > max)
{

p = 1;
q = 2;
max = a;

}
if (max < epsilon)

break;
jacobiRotate(D, eigenVecs, p, q);
iter++;

}
eigenVals[0] = D(0, 0);
eigenVals[1] = D(1, 1);
eigenVals[2] = D(2, 2);

}

void rotationMatrixIrving(const Matrix3d &A, Matrix3d &R)
{

Matrix3d AT_A, V;
AT_A = A.transpose() * A;

Vector3d S;
eigenDecomposition(AT_A, V, S);

const double detV = V.determinant();
if (detV < 0.0)
{

double minLambda = DBL_MAX;
unsigned char pos = 0;
for (unsigned char l = 0; l < 3; l++)
{

if (S[l] < minLambda)
{

pos = l;
minLambda = S[l];

}
}
V(0, pos) = -V(0, pos);
V(1, pos) = -V(1, pos);
V(2, pos) = -V(2, pos);

}

if (S[0] < 0.0f)
S[0] = 0.0f;

if (S[1] < 0.0f)
S[1] = 0.0f;

if (S[2] < 0.0f)
S[2] = 0.0f;

Vector3d sigma;
sigma[0] = sqrt(S[0]);
sigma[1] = sqrt(S[1]);
sigma[2] = sqrt(S[2]);

unsigned char chk = 0;
unsigned char pos = 0;
Matrix3d U;
for (unsigned char l = 0; l < 3; l++)
{

if (fabs(sigma[l]) < 1.0e-4)
{

pos = l;
chk++;

}
}

if (chk > 0)
{

if (chk > 1)
{

U.setIdentity();
}
else
{

U = A * V;
for (unsigned char l = 0; l < 3; l++)
{

if (l != pos)
{

for (unsigned char m = 0; m < 3; m++)
{

U(m, l) *= 1.0f / sigma[l];
}

}
}

Vector3d v[2];
unsigned char index = 0;
for (unsigned char l = 0; l < 3; l++)
{

if (l != pos)
{

v[index++] = Vector3d(U(0, l), U(1, l), U
(2, l));

}
}
Vector3d vec = v[0].cross(v[1]);
vec.normalize();
U(0, pos) = vec[0];
U(1, pos) = vec[1];
U(2, pos) = vec[2];

}
}
else
{

Vector3d sigmaInv(1.0 / sigma[0], 1.0 / sigma[1],
1.0 / sigma[2]);

U = A * V;
for (unsigned char l = 0; l < 3; l++)
{

for (unsigned char m = 0; m < 3; m++)
{

U(m, l) *= sigmaInv[l];
}

}
}

const double detU = U.determinant();

if (detU < 0.0)
{

double minLambda = DBL_MAX;
unsigned char pos = 0;
for (unsigned char l = 0; l < 3; l++)
{

if (sigma[l] < minLambda)
{

pos = l;
minLambda = sigma[l];

}
}

sigma[pos] = -sigma[pos];
U(0, pos) = -U(0, pos);
U(1, pos) = -U(1, pos);
U(2, pos) = -U(2, pos);

}

R = U * V.transpose();
}

D Source Code - Our Method

void extractRotation(const Matrix3d &A, Quaterniond &q,
const unsigned int maxIter)

{
for (unsigned int iter = 0; iter < maxIter; iter++)
{

Matrix3d R = q.matrix();
Vector3d omega = (R.col(0).cross(A.col(0)) + R.col

(1).cross(A.col(1)) + R.col(2).cross(A.col(2))
) * (1.0 / fabs(R.col(0).dot(A.col(0)) + R.col
(1).dot(A.col(1)) + R.col(2).dot(A.col(2))) +
1.0e-9);

double w = omega.norm();
if (w < 1.0e-9)

break;
q = Quaterniond(AngleAxisd(w, (1.0 / w) * omega)) *

q;
q.normalize();

}
}

