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Problem

Rest shape Affine deformation  Best fit rotation  

 

 

Here is the problem we are addressing with our new method. 
Given a rest shape of an object 
and an affine transformation of it described by a matrix A 
We want to find a rotation matrix R that best fits the affine transformation 
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Two Main Applications

• Co-rotational FEM from 4 tetrahedral nodes

• Shape Matching from point cloud 

                   

                 
  

     

 

    
    

 

    
 

  

 

 

There are two main applications in graphics in which this problem arises 
The first is co-rotational FEM 
The general deformation of a tetrahedron with vertices p1, p2, p3, and p4 can be described by an affine 
transformation 
To extract the rotational part of this deformation, we need the closest rotation 
To compute the optimal rigid transform in shape matching, we first compute the matrix A like this and then 
again have to find the closest R 
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Standard Approach

• Use Polar Decomposition

    where  is a rotation matrix and  is symmetric

                 

• We have

• So we can compute

     and       

 

 

The standard approach to find the closest matrix R to A is to compute the polar decomposition splitting A 
into a rotation matrix R and a symmetric matrix S 
This can be done as follows 
Let us have a look at the expression A transposed A. If we substitute RS for A we get S transposed R 
transposed R S.  
Since R is a rotation matrix R transposed R is the identity. 
And since S is symmetric S transposed S is S squared 
So we can directly compute S as the square root of A transposed A 
Once we know S we compute R as A times the inverse of S 
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Standard Approach

• Since    is symmetric we can decompose it as         

with  a rotation and  diagonal (Jacobi iterations)

   
  

     
  

   
  

  

• This makes computing the inverse square root easy:

• To compute        
  

• Compute the inverse square roots of the scalar 
diagonal elements (singular values of  )

 

 

So we have to compute the inverse of S and the inverse square root of A transposed A 
Since S is symmetric we can decompose it into its eigenvectors in a matrix U and the real eigenvalues on 
the diagonal matrix D 
This makes computing the inverse square root easy. We simply have to take the inverse square roots of 
the eigenvalues, which are the scalar values on the diagonal of D.  
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Difficulties

• Degenerated cases
co-planar, co-linear points

• Inverted configuration

      

      

 

 

There are two main difficulties with this approach.  
For degenerated cases when points or elements become close to co-planar or co-linear, the determinant 
of A becomes close to zero 
In this case computing the inverse becomes instable or even impossible. 
Intuitively, the optimal rotation in such cases is not unique 
The second difficult case is when A is inverting. This is the case when its determinate is smaller than one. 
In this case the polar decomposition yields an inverting R instead of a proper rotation 
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Solutions

• Choose missing eigenvectors

– One missing: Cross product

– Two or three missing?

• Choose flip axis

– Smallest eigenvalue [Irving et al. 04]
Standard approach

– Smallest extent of element 
[Schmedding et al. 08]

 

 

A solution to the first problem is to somehow compute the missing eigenvectors based on the existing 
ones 
If only one eigenvector is missing, it can be computed as the cross product from the other two 
If two are missing, it is not clear what to do. Once could compute a cross product with a canonical axis for 
instance 
If all three are missing than the identity might be a choice. 
Those cases typically yield temporal incoherence 
 
The common solution to the inversion problem is the one suggested by Irving et al. 
They simply flip the direction of the eigenvector corresponding to the smallest eigenvalue. 
Schmedding et al found that artifacts can be reduced by choosing the eigenvector along which the 
element has the smallest extent. 
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Putting it all together [Irving et al. 04]

 

 

Putting all this together yields the following algorithm. For convenience, we have it in the appendix of the 
paper 
As you can see, it is quite long and has many branches 
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Motivation for a New Approach

• Make algorithm simpler (better fit on GPU)

• Remove need of choices

• Basic idea:

Input is  and      

• Previous  is used to fill in missing information

• Natural for simulations (temporal coherence)

 

 

So the motivation for us was to find a simpler algorithm that better fits on the GPU 
Also we wanted to remove the need of choosing missing eigenvectors or flipping axes 
We solve these problems with a simple idea 
Instead of taking only A as input, we take A and the R from the previous time step or from a previous 
iteration 
When can then use R to fill in the missing information 
This is a natural solution for simulation since it guarantees temporal coherence. 
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The Algorithm

• Our algorithm has the form

              

where     is the rotation matrix with axis    and angle  . 

• Notice that           always holds even for    

since       

• If      is a proper rotation matrix then so is  

• How to find  ?

 

 

We choose our algorithm to have the following form 
We compute the new R by rotating the previous R. 
The exponential map exp omega is the rotation matrix along the direction of omega about the angle 
omega 
Notice that the exponential map is always a proper rotation matrix with determinant plus one even if 
omega is zero. 
In that case we get the identity. 
So if the previous R was a proper rotation matrix then so is R 
The remaining question is now how to find omega 
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Physical Interpretation

• The  of the polar decomposition minimizes the Frobenius norm

              
 

i.e. is the rotation matrix that is closest to A

• Idea: interpret

– The column vectors   of  as a static object

–                           as a dynamic rigid object

–   as an energy

 

 

To find omega we use a physical interpretation of the problem 
As we show in the paper, the rotation matrix R of the polar decomposition minimizes the Frobenius norm 
F which measures the Euclidean distance between A and R. In other words, the R of the polar 
decomposition is the rotation matrix that is closest to A in this norm 
The frombenius norm can also be expressed terms of the column vectors of the two matrices. 
This yields the following physical interpretation of the problem 
We treat the column vectors ai of A as a static object 
We treat the column vectors ri or R as a dynamic but rigid object 
And we treat F of R as an energy to be minimized 
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Demo

 

 

Here you see a simulation of this setup 
First, the user manipulates A.  
During this, the forces due to the given energy act on the dynamic but rigid object R.  
As you can see, R constantly tries to stay as close as possible to A 
We can also keep A constant and manipulate R with the same effect 
By making certain axes of A very small we decrease the condition number of A and make the problem 
close to singular 
Our method still yields plausible results in this case 
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Torque

• The energy    
 

 
      

 

yields the forces         

on the axes and a total toque of

                    

So we choose  to be parallel to  .

But thow to choose the angle  ?

 

 

Mathematically we first define the energy in terms of the axes of R and A 
This energy yields the simple forces fi = ai – ri which act on the axes of R 
The forces result in a torque tau acting on the rigid object R which turns out to be the sum of the cross 
products of the axes of R and A 
Since the forces start to spin R along the direction of tau we choose omega to be parallel to tau. 
The remaining question is how to choose the magnitude of omega 
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Angle

• For a single pair of axes          

we want  to be their mutual angle.

  
     
     

• If we choose

we get   
        

        
       for small  

 

 

Let us have a look at a single pair of axes ri and ai 
In this case we want omega to be their mutual angle because we want omega to align r with a 
If we choose omega to be the cross product divided by the scalar product then we get for the magnitude 
of omega the tangent of the mutual angle which is the mutual angle for small angles. 
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The Final Formula

• Our final formula reads:

     
       

         
     

where       is a safety parameter

 

 

This yields are final very simple formula 
Notice that we take the absolute value of the denominator to not change the sign of the torque. 
We also added an epsilon to make the division safe. 
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Energy Maxima

• Torque is zero as well 
when   is maximized

• Zero set

• no problem in practice

• resolved by small 
perturbation

 

 

There is one property of the physical interpretation that needs to be noticed 
The torque is not only zero at the energy minimum but also at energy maxima 
Fortunately, the set of configurations for which the energy is maximized is a zero set 
It is therefore very unlikely to end up in such a configuration in practice 
We haven’t seen any artifacts in our simulations 
Also, such situations are resolved by a very small perturbation as this demo shows 
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Source Code

void extractRotation(const Matrix3d &A, Quaterniond &q, 

const unsigned int maxIter) 

{

for (unsigned int iter = 0; iter < maxIter; iter++) 

{ 

Matrix3d R = q.matrix(); 

Vector3d omega =(R.col(0).cross(A.col(0)) + R.col (1).cross(A.col(1)) + 

R.col(2).cross(A.col(2)) ) * (1.0 / fabs(R.col(0).dot(A.col(0)) + R.col

(1).dot(A.col(1)) + R.col(2).dot(A.col(2))) + 1.0e-9); 

double w = omega.norm(); 

if (w < 1.0e-9) 

break; 

q = Quaterniond(AngleAxisd(w, (1.0 / w) * omega)) * q; 

q.normalize(); 

} 

}

• Much simpler than Irving, no branches

• Up to 2 times faster (depends on iteration count)
 

 

The resulting source code using the library Eigen and quaternions to represent R looks like this 
As you can see, it is significantly simpler than Irving and has no branches 
Dependent on the iteration count it is up to two times faster too 
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Results

•                       

•                         

•                      
 

 
 
 

 

• Blue bars (cold start)

• Orange bars (warm start)

 

 

We did some tests on the convergence of our method 
In our setup we set A to be the identity matrix and R to be a random rotation matrix 
The blue bars shows the distribution of the number of iterations it took to reduce the Frobenius norm to 
below 0.001 
The orange bars show the effect of a warm start 
Here we reduced the Euler angles of R to be within –pi/3 and pi/3 
Now 3 iterations are sufficient in all cases. Therefore we set the number of solver iterations to 3 in our 
examples 
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In Action

Questions?

 

 

Here you see a couple of scenes in which we used our method in the context of shape matching 
Are there questions? 

 
 

 


