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Figure 1: From left to right: Tight skirt in the bind pose. Causing problems in poses that differ significantly from the bind
pose. Lowering the overall stiffness results in sagging of the dress. Lowering the stiffness anisotropically along the horizontal
direction solves the problem.

Abstract
We propose a new set of constraints within the Position Based Dynamics (PBD) framework that allow the control
of strain in directions that are independent of the edge directions of the simulation mesh. Instead of constraining
distances between points, we constrain the entries of the Green - St Venant strain tensor. Varying the stiffness
values corresponding to the individual strain coefficients lets us simulate anisotropic behavior.
By working with Green’s rotation-independent, non-linear strain tensor directly we do not have to perform a
polar decomposition of the deformation gradient as in most strain limiting approaches. In addition, we propose
a modification of the constraints corresponding to the diagonal entries of the strain tensor such that they can be
solved in a single step and a modification of the constraints corresponding to the off-diagonal entries to decouple
stretch from shear resistance.
By formulating the constraints within the PBD framework, they can be used not only for strain limiting but to
perform the actual simulation of the deformable object whereas traditional strain limiting methods have to be
paired with a separate simulation method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically Based Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation and Virtual Reality

1. Introduction

Position Based Dynamics [MHR06] has become a popular
method for simulating cloth and soft bodies both in games

and the film industry due to its simplicity, speed and robust-
ness. Traditionally, meshes are simulated by constraining the
distances along edges and bending angles. This approach
controls strain only along the directions of the edges of the
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mesh. The same is true for mass spring systems, the corre-
sponding force based method. In the force based framework
the Finite Element (FEM) formulation removes this depen-
dency and allows the specification of stiffness values in di-
rections that are independent of the tesselation. Our goal was
to come up with a set of constraints that achieve the same in
the position based framework.

Instead of constraining edge lengths, we constrain the
entries of the Green - St Venant strain tensor induced by
the deformed particle positions. Unlike FEM which derives
stresses from strains, integrates the deformation energy and
derives forces, we work with the strain directly by deriving
positional constraints for each entry of the strain tensor.

Being able to control strain along pre-defined directions
independent of the triangulation is useful in a variety of sce-
narios. For instance, the stiffness of cloth typically varies
along the warp and weft directions with relatively low shear-
ing resistance. Often, artists provide animations with frames
in which the clothing is more stretched than in the bind
pose. Having the solver enforce the bind pose dimensions
can cause collision issues and problematic configurations as
shown in Figure 1. Reducing the stiffness an-isotropically
yields stretchy cloth while reducing stiffness horizontally
only solves the problem nicely. This behavior can be ap-
proximated by using edge constraints and regular triangu-
lations that are aligned with the warp and weft directions.
In practice, however, characters are often not designed with
cloth simulation in mind. Moreover, diagonal edges in regu-
lar meshes still couple strain modes that should be indepen-
dent.

Simulating a skin layer with a tetrahedral mesh is a second
example in which mesh independent strain control is useful.
Here skin sliding can be simulated by lowering the shear
resistance along the surface of the character (see Fig. 5).

Locking is a third problem that can be addressed with our
approach. It refers to the fact that perfectly constraining the
edge lengths of a triangle mesh prevents it from being bent in
general directions. English et al. [EB08] solve this problem
by using non-conforming triangles. Since a non-conforming
mesh is not suitable for collision handling, two meshes are
necessary for simulation. Goldenthal et al. [GHF∗07] only
constrain the edges of a regular quad mesh to prevent lock-
ing. With out method, we achieve the same effect on arbi-
trary triangle meshes by reducing the shear stiffness only.

Our main contributions are

• Deriving PBD constraints from constraining the entries of
the strain tensor to simulate deformable objects.

• Using Green’s rotation-independent strain tensor instead
of the Cauchy strain tensor and a polar decomposition of
the deformation gradient.

• A modification of the diagonal constraints such that they
can be solved in a single step.

• A modification of the off-diagonal constraints to decouple
stretch from shear resistance.

2. Related Work

Since Müller et al. introduced Position Based Dynamics
in [MHR06], various improvements have been proposed.
Kubiak et al. [KPGF07] extended the method to simulate
threads in surgical simulation. Müller [Mül08] introduced
hierarchical PBD to reduce cost of simulating high reso-
lution meshes. A new bending model for triangle meshes
was devised by Kelager et al. [KNE10] and a new volume
conservation constraint by Diziol et al. [DBB11]. Kim et
al. [KCMF12] and Müller et al. [MKC12] studied the special
case of one dimensional rods for hair and fur simulation and
proposed fast ways to enforce inextensibility. For a survey on
position based methods we refer the reader to [BMOT13].

The idea of using the strain components for cloth simu-
lation was explored by Baraff and Witkin in [BW98] in a
force based setting. We generalize this idea and apply it to
cloth and tetrahedral objects in a position based framework.

Strain limiting in force based approaches is closely related
to PBD. Here, the positions or the velocities of the vertices
are manipulated directly after each force based simulation
step. In contrast to our approach, strain limiting only kicks
in when material is overstretched while we use the strain
components to do the actual simulation of the material. On
the other hand, our method could be used in a force based
setting for strain limiting as well.

Provot [Pro95] and Bridson et al. [BMF03] proposed to
constrain the length of springs to not stretch or compress be-
yond a given limit in the context of mass spring simulations.
Hong et al. [HCJ∗05] use an implicit formulation to allow
for larger time steps. To increase the convergence rate Gold-
enthal et al. [GHF∗07] used a global solver to constrain edge
lengths of a regular quad mesh to upper limits.

In the context of Finite Element Method (FEM), Picin-
bono et al. [PDA03] limit strain anisotropically by adding an
energy term to penalize strain in certain directions. Perez et
al. [PCH∗13] used Lagrange multipliers to constrain strain
components isotropically. Hernandez at el. [HCPO13] im-
prove this method to support anisotropic material.

The two most closely related methods are the ones pro-
posed by Thomaszewski et al. [TPS09] and Wang et al.
[WOR10]. Therefore we discuss the differences in a bit more
detail. Both work on single elements and solve globally us-
ing either Gauss-Seidel or Jacobi iterations as we do.

Wang et al. [WOR10] limit strain isotropically. Their
method is an extension of the strain limiting approach of
Tsiknis at al. [Tsi06]. Wang et al. extract the principal strains
from the deformation gradient of an element using a polar
decomposition. Next, they clamp the principal strains and
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compute a new clamped deformation gradient. This new gra-
dient is then used to transform the initial shape of the el-
ement again to get the target shape. In contrast, we com-
pute different position correction vectors for each individual
shear and stretch mode which we combine using different
scaling factors to simulate anisotropic behaviour.

Thomaszewski et al. [TPS09] work with Cauchy’s lin-
ear strain tensor and extract the rotational part of the de-
formation gradient using a polar decomposition. With linear
strain, the strain components depend linearly on the veloc-
ities of the adjacent vertices. Specifying the strain compo-
nents yields a 6×6 linear system for the 3×2 velocity com-
ponents of a triangle which has to be solved for each element
in addition to performing a polar decomposition. This com-
putation can be sped up by pre-computing the inverse of a
5×5 sub block which requires storing 25 floats per triangle,
however. In the tetrahedral case, the linear system becomes
12× 12 dimensional while in our case, processing tetrahe-
dral elements is not much slower than handling triangles as
our results show.

In both methods, attachments have to be handled sepa-
rately. In the method of Thomaszewski et al. the linear sys-
tem becomes over-constrained and has to be solved as a least
squares problem. In contrast, in the PBD framework, vertices
are simply attached by setting their inverse mass to zero.

3. Method

We will now derive the new strain-based position constraints
that replace the traditional distance constraints. For the sake
of completeness, we briefly recap the basic concepts of PBD
first.

3.1. Basic PBD

Let us assume we have N particles with positions xi, veloci-
ties vi and inverse masses wi. The main PBD simulation loop
has the following form:

initialize xi and vi
while simulating do

vi← vi +∆t fi
pi← xi +∆t vi
pi← solve (pi)
vi← (pi−xi)/∆t
xi← pi

end

In the simulation loop, after updating the velocities, pre-
dicted positions pi are computed using an explicit Euler step.
These positions are modified by a solver to meet a set of po-
sitional constraints C j. A positional constraint can be defined
by a scalar function C(p1, . . .pN) that is zero when the con-
straint is satisfied. The solver iterates multiple times over all

constraints in a Gauss-Seidel type fashion solving the sys-
tem of non-linear equations. For a single constraint C, the
positional corrections ∆pi for point i is computed as

∆pi =−s k wi
∂

∂pi
C(p1, . . .pN), (1)

where

s =
C(p1, . . .pN)

∑ j w j

∣∣∣ ∂

∂pi
C(p1, . . .pN)

∣∣∣2 (2)

and k ∈ [0,1] stiffness parameter. The coefficient k is not
a true physical stiffness coefficient because its effect is
time step and iteration count dependent. However, in games
where both are typically constant, k is an intuitive and easy
to tune parameter.

The equations above result from a local linearization of
the constraint function at the current particle configuration.
What makes PBD so robust is the fact that the linearization is
updated before each constraint projection and not held fixed
as with global solvers. After the solve, the velocities and
positions are updated based on the modified predicted po-
sitions. To give an example, C(x1,x2) = |x1− x2| − d con-
strains the distance between particles 1 and 2 to be d. Plug-
ging this constraint function into Eq. (1) and Eq. (2) yields
the intuitive corrections

∆p1 =−
w1

w1 +w2
(|p1−p2|−d)

p1−p2

|p1−p2|
(3)

∆p2 =+
w2

w1 +w2
(|p1−p2|−d)

p1−p2

|p1−p2|
(4)

3.2. Tetrahedral Constraints

We will now turn to our new constraints. Our basic idea ap-
plies to both triangle and tetrahedral meshes. Let us first con-
sider a single tetrahedron. Instead of using constraints on the
edges that control the pairwise distances of the particles, we
derive constraints that involve all four particles and drive the
configuration to a state in which the components of Green’s
strain tensor assume given values. To formulate these con-
straints we need the expressions of the strain components in
terms of the positions of the four particles adjacent to the
tetrahedron.

Let q0,q1,q2,q3 be their material positions and
p0,p1,p2,p3 the corresponding world positions. Since trans-
lation does not contribute to strain we can assume that q0 and
p0 are zero. Then, with

P = [p1,p2,p3] and (5)

Q = [q1,q2,q3] (6)

we can express the deformation gradient as

F = PQ−1 (7)

and the Green - St Venant strain tensor as

G = FT F− I (8)
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Figure 2: Constraint values and projection vectors for the white vertex moving in the plane with the other two vertices are
attached. The three columns show x-, y- and shear strain (green positive, red negative, clamped). On the top row we used
the standard strain functions S11− 1, S22− 1 and S12. The bottom row depicts our modified constraints functions

√
S11− 1,√

S22−1, and S12/|fi||f j|. Note that the zero sets are unchanged. In contrast to the top row, the x- and y- constraints are solved
with a single step because the gradient is constant along the projection direction. The modified shear function tilts the projection
vectors to decouple shear from stretch resistance.

where I is the identity matrix. We dropped the factor 1
2 in the

original definition of Green’s strain tensor because it cancels
out in our constraint formulation. The matrix Q−1 is con-
stant and can be pre-computed.

The diagonal entries of Gii represent stretch and the off-
diagonal entries Gi j = G ji shear both with respect to the
main axes in the material frame. We now introduce the three
stretch and three shear constraint functions

C(p0,p1,p2,p3) = Sii− s2
i (9)

C(p0,p1,p2,p3) = Si j i < j, (10)

where S = FT F and si rest stretches, typically equal to 1.
These constraints pull the particles towards states of zero
stretch and zero shear. Associating separate stiffness coef-
ficients ki j with each constraint lets us simulate anisotropic
material. Note that no rotation matrices have to be estimated
via polar decomposition as in most strain limiting methods
because rotational independence is built into the definition
of Green’s strain tensor.

3.3. Triangle Constraints

For triangles the corresponding matrices P and Q are not
square because the number of particles is reduced by one but
the dimensionality of the particle positions stays the same
so Q−1 is not defined. This problem can be solved by the

natural choice of defining the rest state of the triangles via
two dimensional texture coordinates on the triangle mesh. To
properly simulate anisotropic cloth behavior the texture co-
ordinates must be aligned with the weft and warp directions
of the cloth. Now Q becomes a 2×2 dimensional matrix and
Q−1 is well defined. The definition

S = Q−1T
PT PQ−1 (11)

is valid too with S,Q ∈ R2×2 and P ∈ R3×2. Note that the
strain based constraints for tetrahedra and triangles are ag-
nostic to reflections which will be considered in Section 3.7.

3.4. The Square Root of Strain

Although these are natural definitions of the constraint func-
tions, there is a more stable way to formulate the stretch con-
straints in Eq. (9). To see this, let us have a look at a simple
distance constraint with rest length d between two points.
The two constraint functions

C(p1,p2) = |p1−p2|−d and (12)

C(p1,p2) = |p1−p2|2−d2 (13)

are both valid. However, the first function is linear along
p1−p2 while the second is not. This means that the lineariz-
ing constraint projection of PBD can solve the first constrain
perfectly in one step. This is not true for the second con-
straint function which corresponds to our measure of stretch.
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Figure 4: Varying soft body stiffness parameters. Figures (a) - (d) show the recovery of a torus from a heavily entangled state by
increasing the volume stiffness. For (e) we reduced all but the volume conservation stiffness values. As a result, the torus heavily
deforms but its volume is conserved. Figure (f) shows the result of only softening the volume stiffness and the stiffness along
the main axis of the torus. The result of high shear and low stretch resistance is shown in Figure (g) where angle distortion is
small while the shape is stretched. Figure (h) shows the opposite configuration. Here, stretching is small while the torus bends
heavily.

The problem can easily be fixed by replacing Eq. (9) by

C(p0,p1,p2,p3) =
√

Sii− si. (14)

With this modification, the stretch constraint of an element
is solved correctly with a single projection step because
the gradient of the constrain function is constant along the
projection direction as the bottom images of the first two
columns of Fig. 2 show. For a derivation of the position cor-
rections based on the proposed constraints see the Appendix.
This modification reduces the relative remaining stretch with
the same number of solver iterations by 25% on average.
More importantly, it increases the stability of the simulation
because it prevents overshooting.

3.5. Decoupling Shear from Stretch

The shear constraint function Si j can be written as Si j =
fi · f j, where fi and f j are the ith and jth column vectors of F.
However, this function not only penalizes the angle between
the axes of the deformed coordinate system, i.e. the dot prod-
uct of the column vectors, but also the principal stretches,
i.e. the magnitudes of the column vectors. To decouple strain
from stretch we propose a modified shear constraint function

S̄i j =
fi · f j

|fi||f j|
=

1
|fi||f j|

Si j. (15)

The modified constraint function and the corresponding
PBD projections are shown in the last column of Fig. 2.
Since the shear constraints are non-linear along the projec-
tion direction, overshooting is possible. To be on the safe
side, one can reduce the shear coefficient as done in Fig. 2.
We have not seen instabilities in our experiments due to the
shear constraints though.

3.6. General Strain Orientation

Eq. (9) and Eq. (10) constrain strain along the global coor-
dinate axes. In certain cases, this is not desirable. Let us as-
sume we have a tetrahedral layer on the surface of a character
for simulating skin and we want the skin to slide easily tan-
gential to the surface but not normal to it. There is a simple
and elegant solution to this problem. We do not even have to
modify our formulation. All we need to do is to modify the
rest shape of the tetrahedra. As a pre-computation step, a lo-
cal frame is computed for each tetrahedron. In the example
above, this frame would be spawned by the tangent and nor-
mal vector of the surface at the location of the tetrahedron.
The constant rest positions q0,q1,q2 and q3 are then simply
stored with respect to this local frame.

3.7. Volume and Area Conservation

None of the constraints above controls the volume of tetra-
hedra or area of triangles on its own. Only if all constraints
are satisfied at the same time, we have G = I and, thus,
det(F) = 1, i.e. conservation of volume. Often it is important
to control volume conservation separately though. It allows
the simulation of soft material with strong volume conser-
vation for instance. Adding a separate volume/area conser-
vation constraint is straight forward in the PBD framework.
We simply define

Cvolume(p0,p1,p2,p3) = det(F)−1 and (16)

Carea(p0,p1,p2) = det(F)−1 (17)

for 3D solids and 2D cloth respectively, where the first con-
straint corresponds to the volume conservation term pro-
posed in [MHR06]. To be compatible with rest stretches
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Figure 3: Varying the cloth stiffness parameters of dif-
ferent strain components. From top to bottom the resis-
tance to x-stretch, y-stretch and shear are: (high,high,high),
(hight,high,low) and (low,high,high). Our method allows the
control of these modes independently on triangle meshes
with highly non-regular tessellations as the one used here.

other than one these formulas need to be generalized to

Cvolume(p0,p1,p2,p3) = det(F)− s1s2s3 (18)

Carea(p0,p1,p2) = det(F)− s1s2. (19)

Another important feature of this constraint is that it han-
dles element inversion for tetrahedra since

det(F) = 1 (20)

det(P) det(Q−1) = 1 (21)

det(P) = det(Q) (22)

states that the signed volume of the tetrahedron must match
its signed rest volume. In the Appendix we give the explicit
formula for this constraint which shows that in case of vol-
ume inversion, vertices are projected across the base face to
the correct side.

Element inversion is a general issue with FEM-based ap-

Figure 5: Skin sliding on an alien bull. The top image shows
the skin deformation created by linear blend skinning which
stretches the surface unevenly. Our method allows the simu-
lation of a tetrahedral layer on the surface with low tangen-
tial shear resistance yielding correct skin sliding (bottom).

proaches because forces are in general derived from the
strain tensor only. Various papers such as [ITF04] have con-
centrated on this problem alone. Our volume conservation
term is a simple and effective solution as Fig. 4 shows.

However, adding an additional constraint for volume con-
servation can yield jittering due to the over-constrained sys-
tem. This happens with extreme deformations when the stiff-
nesses of the strain and volume constraints are close to 1.
We found in our experiments that softening the volume con-
straint by a small amount typically solves this problem.

3.8. Bending

In the case of cloth simulation, since strain is an intrinsic
measure, the strain based constraints do not influence bend-
ing which is an extrinsic quantity. Therefore, bending needs
to be handled separately as well.

To simulate bending resistance we constrain the dihedral
angle of pairs of adjacent triangles as proposed in [MHR06].
However, we use simplified formulas for the derivatives of
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Figure 6: Time in milliseconds for one iteration over 3600
elements, where CSL-GS stands for Continuum based Strain
Limiting with Gauss-Seidel iterations, SBD for Strain Based
Dynamics and EDB for Edge Based Dynamics.

the dihedral angle w.r.t. the particle positions, namely the
bending mode of a pair of triangles described by Bridson
et al. [BMF03]. This mode corresponds one to one to the
derivatives of the bending angle including scaling – a fact
that is not mentioned in the paper. Only the sign has to be
flipped depending on the orientation of the triangle pair as
we show in the Appendix.

3.9. Damping

For damping, we use a general PBD formulation that specif-
ically damps the relative velocities with respect to a con-
straint with positional correction ∆p1, . . . ,∆pN as

vi← vi− k

(
N

∑
j=1

vT
j n j

)
ni (23)

where k ∈ [0,1] is the corresponding stiffness and ni =
∆pi
|∆pi| .

Note that the term ∑
N
j=1 vT

j n j makes sure that damping is
only applied to a given mode n j, without adding any arti-
ficial damping to rigid body motion as the sum cancels out
when the mode itself does not change.

4. Results

In the experiment shown in Fig. 3, we used a rectangular
piece of cloth with irregular triangulation. We modified the
stiffness parameters with respect to x-stretch, y-stretch and
shear individually. Even with a highly irregular mesh, the
cloth shows the expected behavior.

Fig. 4 shows the tetrahedral case with a volumetric torus
and locally aligned elements. To demonstrate the effective-
ness of the volume term to correct inverted elements we
started with the heavily entangled state in Fig. 4(a). As the
first four images show, the shape recovers with only a few

iterations. Playing with the stiffness parameters of the dif-
ferent modes lets us create interesting volumetric effects. In
Fig. 4(c) we reduced all but the volume conservation stiff-
ness. Reducing only the volume stiffness and the stiffness
along the main axis creates the behavior shown in Fig. 4(f).
With high shear and low stretch resistance in Fig. 4(g) the
edge lengths are more deformed than the angles between
edges. In the opposite configuration in Fig. 4(h), the torus
is free to bend significantly while stretching is small.

Timings using a single thread on a Core i7 CPU at 3 Ghz
are given in Fig. 6. It was not possible to extract performance
numbers on strain limiting alone from the paper of Wang et
al. [WOR10] because the authors only measured the time
spent on the combination of strain limiting and simulation.
From the performance numbers given by Thomaszewski et
al. [TPS09] we were able to extract a time of 5.3 millisec-
onds for one iteration of strain limiting over 3600 trian-
gles which we divided by a factor of 1.5 to compensate for
the fact that they used a 2 Ghz CPU. Our method is more
than three times faster than Continuum based Strain Lim-
iting (CSL) and about 30 percent slower than Edge Based
Dynamics (EBD). For tetrahedra, the slowdown of our ap-
proach w.r.t. EBD is slightly higher. In both approaches,
the number of constraints increases from 3 to 6 but the
number of vertices per constraint increases from 3 to 4 in
SBD while it stays at 2 in EBD. Even though not analyzed
by Thomaszewski et al. we expect CSL to be significantly
slower for tetrahedra in which case the size of linear system
per element increases to 12×12.

A common problem in clothing simulations is that the
cloth fits well in the bind pose but causes problems in poses
that differ significantly from it. Lowering the stiffness in
general creates stretchy cloth. As the results in Figure 1
show, being able to lowering the stiffness horizontally only
solves the problem.

We also used our approach for simulating a tissue layer
on a character as shown in Figure 5. Making the shear con-
straints very soft lets us simulate the skin sliding effect in a
simple way. In the given example, skin sliding significantly
reduces the uneven stretching of linear blend skinning.

5. Conclusion

We have presented a new way to simulate deformable ob-
jects in the PBD framework. Instead of constraining the dis-
tances on edges, we derive sets of positional projections for
the deformation modes corresponding to the entries of the
Green - St Venant strain tensor. We proposed modifications
of the constraints to make the projections more robust and
to decouple shear from stretch. We also discussed volume
conservation, bending and damping.

Our formulation is a step towards bridging the gap be-
tween PBD popular in games and continuum based FEM
which is often considered to be too expensive for real-time
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applications. With the relatively simple formulation of our
framework and the explicit formulas for the position correc-
tions given in the Appendix we hope that this work is prac-
tical enough to be widely adopted in the gaming and movie
industry.
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Appendix A: Explicit Formulas for Constraint Projection

Here we give the explicit formulas for the constraints to ease
the implementation of our method. Remember that we as-
sume p0 = q0 = 0.

Strain Based Constraints

Let ci the columns of Q−1 and fi be the columns of F i.e.

[c1,c2] = Q−1 (24)

[f1, f2] = F (25)

and

[c1,c2,c3] = Q−1 (26)

[f1, f2, f3] = F (27)

for triangles and tetrahedra, respectively. Then the entries of
S can be computed as

Si j = fi · f j = (Pci) · (Pc j), (28)

where i, j∈{1,2} for triangles and i, j∈{1,2,3} for tetrahe-
dra. The derivatives of the components of S w.r.t. the particle
positions, needed in the PBD approach are

∇Si j =
[
∇p1 ,∇p2

]
Si j = f jcT

i + ficT
j (29)

∇Si j =
[
∇p1 ,∇p2 ,∇p3

]
Si j = f jcT

i + ficT
j (30)

for triangles and tetrahedra respectively and

∇p0 Si j =−
d

∑
k=1

∇pk Si j, (31)

c© The Eurographics Association 2014.
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where d = 2 for triangles and d = 3 for tetrahedra. Following
[MHR06] we get the particle projection vectors w.r.t. Si j as

∆pk =−λwk∇pk Si j, (32)

where wk is the inverse mass of particle k and

λ =
Sii− s2

i

∑k wk
∣∣∇pk Sii

∣∣2 , (33)

λ =
Si j

∑k wk
∣∣∇pk Si j

∣∣2 , (34)

λ = 2
√

Sii− si

∑k wk
∣∣∇pk Sii

∣∣2√Sii (35)

for Eqs. (9), (10) and (14), respectively. For the modified
shear constraint function given in Eq. (15), the gradient is

∇S̄i j =
1
|fi||f j|

∇Si j−
|f j|2 ficT

i + |fi|2 f jcT
j

|fi|3|f j|3
Si j. (36)

Material Coordinates for a Triangle

The texture coordinates ui = (ui,vi) of the triangle vertices
cannot be used directly as material coordinates for the rest
state because they might contain stretching. To compute the
material coordinates q0, q1, and q2 ∈ R2 we need an ortho-
normal local frame. Let the rest positions of the vertices of
the triangle in world space be x0,x1,x2 ∈ R3. We can com-
pute two world space tangential vectors tu and tv ∈R3 along
the u and v axes as

(tu, tv) = (x1−x0,x2−x0)(u1−u0,u2−u0)
−1 (37)

These tangents give us the local frame to transform the
global positions into material coordinates as

(c1,c2) = [n1,n2]
T (x1−x0,x2−x0), (38)

where n1 =
tu
|tu| and n2 =

tv
|tv| .

To make sure tu and tv are normal to each other, the latter
can alternatively be computed as the cross product of tu with
the triangle normal.

Bending Constraint

Let p1,p2,p3 and p4 be the particles of a bending element
consisting of the two triangles (p1,p3,p4) and (p2,p4,p3).
The bending angle φ can be computed via the two triangle
normals as

φ = arccos
(

(p3−p1)× (p4−p1)

|(p3−p1)× (p4−p1)|
· (p4−p2)× (p3−p2)

|(p4−p2)× (p3−p2)|

)
(39)

The spatial derivatives correspond to the bending mode

of [BMF03] and are

∇p1 φ = |e|n1 (40)

∇p2 φ = |e|n2 (41)

∇p3 φ =
(p1−p4) · e
|e|

n1 +
(p2−p4) · e
|e|

n2 (42)

∇p4 φ =
(p3−p1) · e
|e|

n1 +
(p3−p2) · e
|e|

n2, (43)

where

e = p4−p3 (44)

n1 =
(p3−p1)× (p4−p1)

|(p3−p1)× (p4−p1)|2
(45)

n2 =
(p4−p2)× (p3−p2)

|(p4−p2)× (p3−p2)|2
. (46)

The signs of all the derivatives have to be flipped if (n1×
n2) · e > 0.

Volume / Area Conservation Constraints

From Eq. (22) we have

Cvolume(p1,p2,p3) = det(P)−det(Q) (47)

= pT
1 (p2×p3)−qT

1 (q2×q3) (48)

and its derivatives

∇p1Cvolume = p2×p3 (49)

∇p2Cvolume = p3×p1 (50)

∇p3Cvolume = p1×p2 (51)

∇p0Cvolume =−p2×p3−p3×p1−p1×p2 (52)

(53)

Similarly we can derive a constraint for preservation of
triangle area as

Carea(p1,p2) = |p1×p2|2−|q1×q2|2. (54)

Its derivatives are

∇p1Carea = 2p2× (p1×p2) (55)

∇p2Carea = 2p1× (p2×p1) (56)

∇p0Carea =−2p2× (p1×p2)−2p1× (p2×p1) (57)

(58)

with the corresponding particle projection vectors

∆pk =−λwk∇pkCvolume(area), (59)

where

λ =Cvolume(area)/∑
k

wk
∣∣∇pkCvolume( area)

∣∣2 . (60)
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