
Symposium On Computer Animation (2009)
Eitan Grinspun and Jessica Hodgins (Editors)

Fast and Robust Tracking of Fluid Surfaces

Matthias Müller

NVIDIA

Abstract

Surface tracking is an important problem with applications in many researchfields. Among the most famous
examples in computer graphics is the simulation and rendering of liquids with free surfaces. A surface that is
advected by a general velocity field constantly changes its topology. This isthe main reason why moving surfaces
are typically defined implicitly as the zero set of a scalar field rather than by an explicit representation such as a
mesh for instance.
In this paper we present a method for tracking fluid surfaces using trianglemeshes. This is done in two steps.
First, the vertices are advected by the velocity field of the fluid. Second, self-penetrations are fixed using marching
cubes triangle templates. The technique is efficient in terms of computation and memory consumption, it is simple
to implement and allows for direct control of volume and feature preservation.

1. Introduction

In computer graphics, surfaces of rigid and deformable ob-
jects are often represented by explicit triangle meshes. Trian-
gle meshes are simple and efficient data structures. They can
be sent directly to GPUs for rendering for instance. In ad-
dition, the explicit representation makes direct Lagrangian
simulation of cloth or soft bodies straight forward. One sim-
ply modifies the vertex positions. Under large deformations,
local re-sampling might be necessary as well. Meshes are
well suited as long as the topology of the surface does not
change. In the case of deformable solids this is guaranteed
in most scenarios (except when the bodies are allowed to
merge or tear). For solids, the self collision handling process
should make sure that surfaces do not self-intersect.

In contrast, the free surface of a liquid constantly changes
its topology by splitting and merging with itself. In this sce-
nario, working with explicit representations of the surface
gets tricky. A triangle mesh would need to be repaired when-
ever a self intersection occurs. The common way to circum-
vent this problem is to use the level set method [Set99]. The
main idea is to define the surface implicitly as the zero set

of a scalar field – typically its signed distance field. During
simulation, the scalar field is advected along a velocity field.
In case of fluid simulation, the velocity field is given as the
solution of the Navier-Stokes equations. A typical algorithm
to simulate free surface fluids in an Eulerian, grid-based set-
ting comprises the following steps:

1. Update the velocity field by solving the Navier Stokes
equations on the fluid grid

2. Solve the advection equation on the level set
3. Update the structure of the narrow band grid and extrap-

olate the level set values
4. Re-normalize the level set
5. Extract a triangle mesh from the level set for rendering

using Marching Cubes [LC87]

High resolution simulations of this type are still too ex-
pensive to run in real time. By reducing the resolution and
using non-physics tricks for preventing volume loss, Crane
et al.produced impressive results at interactive frame rates
though [CLT07].

If the resolution of the level set is higher than the one
of the fluid grid, steps 2 - 4 become the bottleneck in both

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

performance and memory consumption. Also, many people
have implemented Stam’s stable fluid method [Sta99] but
most often without free liquid-air interfaces. We believe that
implementing the (particle) level set method is still a hurdle.
The goal of our work is to remove steps 2 - 4 by replacing the
level set with an explicit triangle mesh which significantly
reduces the complexity of the algorithm. Our new method
looks like this:

1. Update the velocity field by solving the Navier Stokes
equations on the fluid grid

2. Advect the vertices of the surface mesh
3. Make the surface mesh self-collision free

Step 2 is so fast, it can be neglected in a performance anal-
ysis. Our method to fix the potentially self-intersecting sur-
face is simple and fast as well.

• Determine the intersections of the mesh with the edges of
an implicit regular grid

• For the corners of each intersected cell, determine whether
they are inside or outside the surface

• Based on the locations of intersections and inside-outside
information, create the triangles of the new mesh using
marching cubes templates.

Our method has several advantages over the traditional
implicit approach. Even in the narrow band approach, the ex-
plicit level set grid stretches several cells away from the sur-
face using considerable amount of memory which we save in
our approach. The algorithm is easy to implement and well
suited for parallelization. Also, arbitrary speedup is possible
by only fixing the mesh everynth frame. In addition, with a
surface represented as a triangle mesh, rendering is fast and
we can use a simple method to prevent volume loss.

1.1. Related Work

There is a large body of work in the field of surface track-
ing and the level set method. We refer the reader to the two
well known and comprehensive books [Set99] and [OF03]
and only discuss a few selected papers here. Surface track-
ing plays an important role in many fields of research. A
few recent examples are modeling of soft tissue deformation
in medical simulation [HBAD07], tomography [MM07],
molecular dynamics [CDML07] and feature profile evolu-
tion in nano technology [KH07].

The level set method was originally developed by [OS88].
An important application of the level set approach in com-
puter graphics is the tracking of the free surface of a liq-
uid simulated on an Eulerian grid [FF01]. [DC98] deployed
an implicit representation for the surface for deformable ob-
jects.

When used to track the free surface of liquids, the basic
level set method suffers from volume loss and blurring of
features. To alleviate this problem, Enrightet al.proposed the
particle level set method in [EFFM02,EMF02] and refined it

in [ELF05]. Here, particles that are advected explicitly along
with the signed distance function are used to counteract nu-
merical dissipation. The method is therefore a combination
of explicit and implicit surface tracking. [BGOS06] pro-
posed the semi-Lagrangian contouring method which goes
back and forth between an implicit and explicit surface rep-
resentation to reduce the volume loss problem. In contrast
to these methods, our algorithm is purely Lagrangian with-
out the need of alternating between two different representa-
tions.

Recently [KLL ∗07] devised a method for controlling the
volume of a liquid defined by a level set. They use a con-
troller which generates an artificial pressure term based on
the volume deviation. In contrast, with the explicit mesh, we
enforce volume conservation geometrically.

A scalar field defined on a regular grid cannot capture
features that are smaller than the spacing of the grid. The
main problem in connection with liquid simulation is that
thin sheets and puddles disappear unnaturally. [LGF04] ad-
dressed this problem by using an oct-tree data structure. In
the second part of the paper, we propose a method that can
capture subgrid detail without the overhead of dynamically
maintaining an oct-tree.

There are two main classes of fully explicit surface track-
ing methods, grid-free and grid based methods. Both have
their advantages and disadvantages.

Brochuet al.published the most recent grid free method
[BB06,BB09]. The main and important advantage of work-
ing without a grid is that features are preserved and the mesh
is not altered when translated or rotated. Under large dis-
tortions such as stretch, compression and self-intersections,
maintaining a good quality mesh becomes tricky though.
Brochuet al.perform up to 10 sweeps over all triangles per
time step. Also, their method only works if the mesh is kept
intersection free at all times.

In grid based approaches, a new mesh is generated at each
time step by creating new vertices and triangles inside cells
of an implicit grid. Here, the mesh structure is altered even
under pure translation or rotation. The advantage however
is that this approach performs all fixing steps such as re-
sampling and self-intersection removal in one single sweep.
Also, the operations within all cells are similar making the
method ideal for parallelization on a SIMD machine such
as a GPU. Glimmet al.propose a hybrid approach [GGL98,
GGLT99]. They use a grid free method as long as the mesh
is not severely distorted and fall back to a grid based step
otherwise.

Since we aim at real-time simulation of free surface liq-
uids, we propose a purely grid-based algorithm because
of the simplicity and parallel nature of the technique. As
Glimm et al.we create new vertices where the mesh inter-
sects the implicit grid. The way we create triangles is more

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

robust though because we do not need the mesh of the pre-
vious step and can handle defect meshes with holes as well.

Recently [LZ09] used a combination of Lagrangian par-
ticles instead of triangles in connection with a background
grid to track moving interfaces. This is an interesting alter-
native but it has grid based time stepping restrictions.

Most closely related to our method is the work of
[WTGT09]. They also use an explicit triangle mesh to repre-
sent the surface and fix topological changes using marching
cubes templates on a regular background grid. In contrast
to our approach, they only do this in regions where self in-
tersections occur with the advantage of preventing feature
loss due to constant re-sampling. However, as in [BB09],
explicit mesh maintenance is needed. Explicitly keeping a
consistent triangulation between fixed and non-fixed parts
adds additional complexity to the method. The goal of our
research was to provide a method suitable for real-time use.
At the price of constant re-sampling, we can keep the algo-
rithm very simple (at least the basic version). An additional
advantage is that the same steps are executed for all cells
which simplifies parallelization significantly. An advantage
of our extended version is that it can handle self intersections
within thin sheets or shallow puddles. Self-intersecting thin
features are automatically fixed because our extended tem-
plate set contains configurations to capture them (see Fig.4).
In [WTGT09] a piece of the mesh is either kept as is or re-
placed by regular marching cube templates. So self intersect-
ing thin features are either removed completely or remain
self intersecting.

2. Core Algorithm

In this section we describe the core algorithm introduced
in the previous section in more detail. The surface to be
tracked is represented at all times by a closed manifold tri-
angle mesh. At each time step, the vertices of the mesh are
first advected. Advection potentially introduces self intersec-
tions. Therefore, in a second stage, the mesh is fixed before
the next time step starts. This stage does not need to be exe-
cuted at each time step necessarily. It might be feasible to run
and render few advection steps before the self-intersections
are resolved. In any case, the problem we have to solve could
be stated as follows:

• Given a closed potentially self-intersecting manifold mesh
• Create a closed non-self-intersecting manifold mesh

which approximates the outside of the input mesh.

To solve this problem, a regular grid is used. The size of
the cubical cellsh is a user-specified parameter. We use a
sparse data structure based on spatial hashing [THM∗03] and
only store the cells that are intersected by the input mesh (see
Fig. 2).

First we determine the intersections of the input triangles
with the edges of the grid cells. Each intersection has a type

+2 -1 0

0 2 1 1

-1

1 0

Figure 1: Entry and exit intersections are summed up in the
state change variable of each cell edge to determine whether
the grid nodes are inside our outside the surface.

depending on the triangle normal. If the component of the
normal along the edge is positive, the intersection is of type
exit, otherwise it is of typeentry. Note that there is poten-
tially more than one intersection per cell edge. Therefore,
with each cell edge we store a state change counter which is
initialized with zero. For all intersections of that particular
edge, the state change variable is increased or decreased by
one dependent on whether the intersection is of typeentryor
exit, respectively.

With this information we can now determine the states of
the nodes of the grid as eitherinsideor outside. To do this,
only the edges pointing in x-direction are necessary. For each
pair of y- and z-coordinates present in at least one grid cell
we follow the edges in x-direction summing up the state dif-
ference counters (see Fig.1). Each grid node for which the
sum is greater zero is marked asinside. All others areout-
sidenodes. Interpreting all marks greater than zero asinside
is our trick to get rid of all self-intersecting parts of the input
mesh (see Fig.2). It is important that singular cases are han-
dled properly. If the cell edge runs through edges or vertices
of the input mesh, one has to make sure that only one inter-
section is counted. We do this by lumping together cuts that
are closer than anε. This simple approach is prone to numer-
ical errors though. To make the process more robust, we not
only use the x-direction as just described but all three prin-
cipal edge directions in positive and negative direction and
mark a node asinside if more than 3 out of the 6 tests vote
for inside. This way, we can also handle defect meshes with
holes robustly. A similar approach was used in [HBW03]
for modeling occlusions. In our tests, the method was robust
enough to handle the potentially ill conditioned normals pro-
duced by the marching cubes method.

Finally we apply the marching cubes templates [LC87] to
each cell to create the triangles of the new mesh. These tem-
plates require a vertex on each cell edge for which the states
of the adjacent grid nodes differ. We create these vertices
uniquely for all the cells adjacent to the particular edge to
make sure that the resulting mesh is connected. In order to
handle multiple intersections per edge, we choose the posi-
tions of these vertices to be the average of the positions of
all intersections of the edge Note that, by construction, the
resulting mesh is manifold, closed and non-self-intersecting
as requited.

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

Figure 2: Two dimensional case. Left: The input mesh and the sparse grid with nodes marked as inside or outside. Right: The
new mesh created using the marching squares templates.

2.1. Volume Conservation

As with Level Sets, our approach suffers from volume loss.
A simple approach to control the volume exploits the fact
that we are working with an explicit representation of the
surface. The volume enclosed by the surface is

V =
1
6

ntriangles

∑
i=1

(pt i
1
×pt i

2
) ·pt i

3
, (1)

wheret i
1, t

i
2 and t i

3 are the three indices of the vertices be-
longing to trianglei andpi the positions of the vertices. The
volume gain∆V when moving all vertices by a distanced
along their outward normal can be approximated as

∆V ≈ Ad, (2)

where

A =
1
2

ntriangles

∑
i=1

|pt i
1
×pt i

2
|. (3)

is the area of the surface. So one way to keep the volume at
a desired valueV0 is to move all vertices by the distance

d = (V0−V)/A (4)

along their outward normal vector. To make sure that the
liquid does not get extended into solid objects, only the tri-
angles and vertices not in contact with the boundary should
be considered in Eq. (3) and Eq. (4) while the entire surface
is used for the computation of the volume.

Our simple tracking method together with this straight
forward way of preserving volume make possible fast and
robust simulation of free surface liquids with very limited
memory consumption. Fig.10 shows a simulation sequence
created with the basic algorithm described so far. We also
used a simple way of preserving texture coordinates. Each
vertex of the new mesh is created by an intersection of a grid
edge with a triangle. We compute the texture coordinates of

the new vertex as the barycentric sum of the texture coor-
dinates of the vertices adjacent to that intersecting triangle.
The barycentric weights are given by the location where the
edge hits the triangle. If multiple triangles intersect an edge,
texture advection is not well defined anymore. In that case
we choose and arbitrary triangle.

3. Subgrid Feature Preservation

Using a grid for mesh creation has the effect that subgrid
features disappear. This is true for the level set approach as
well. For cases where this is problematic, we propose an ex-
tension of our basic method.

One of our applications is an unbounded Eulerian liquid
simulation using a sparse dynamically changing simulation
grid. In contrast to the easier case where the fluid is con-
fined to a box, the unbounded liquid typically spreads on the
floor and turns into a thin layer. The thickness of the layer
decreases rather evenly so as soon as it goes below the grid
spacing the entire layer disappears more or less at once.

To alleviate such problems, we now present a technique
that can track arbitrarily thin structures on the uniform grid
used so far without the need of local subdivision. To bound
the complexity and the number of vertices created at each
time step, we restrict the type of subgrid geometry a single
cell can hold to one arbitrarily thin layer. In our tests, the
ability to handle this type of detail resolves a majority of the
problematic cases. The technique allows us to handle thin
sheets of water (separated by at least one grid cell) as well
as shallow puddles for instance (see Fig.3).

3.1. The 2d case

Let us first look at the 2d case. The top row in Fig.5 shows
the standard marching squares templates modulo rotation.
On each cell edge with adjacent nodes of different type a

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

Figure 3: Our method preserves thin layers such as sheets
and shallow puddles.

Figure 4: Explicit advection of the two surfaces of thin fea-
tures often causes self-intersections. Our method resolves
these automatically.

vertex is created (shown in green). As Fig.1 shows, it is
possible that edges are cut and still end up having adjacent
nodes of the same type. This is detail that is lost in the stan-
dard algorithm. We preserve this detail as follows: For each
edge with adjacent nodes of the same type for which we have
registered at least two cuts, we create two additional vertices
(shown in red in Fig.5). As their positions we choose the
minimum and maximum locations of all registered cuts on
the edge.

An enlarged set of templates is necessary to account for
the additional vertices (Fig.5). In addition to the two states
of the cell nodes, cell edges have two states as well – they
can contain no or two red vertices. This enlarges the number
of templates from 24 to 28. Not all of the 28 configurations
are valid though because red vertices are potentially created
only on cell edges with adjacent nodes of equal type.

There are certain cases where additional vertices are nec-
essary. Let us have a look at template 1-b for instance. Here,
a thin layer ends inside the cell so we need the yellow vertex
for not losing the front. The case can only occur if the input
2d surface takes a turn inside the cell which is only possible
if there is an input vertex inside the cell. We choose this ver-
tex of the input surface directly for the construction of the
new surface. There might be more than one vertex of the in-
put surface in the cell. In order to control the complexity of
the new surface, we don’t want to use all of them. Instead,
the user can specify an upper boundk for how many inter-
nal vertices should be used (we chosek = 2 in the samples).
Fig. 7 shows the cases k = 1 (a), k = 2 (b) and k = 3 (c).
The vertices are chosen such that the enclosed region has
maximal area. We use internal vertices of the input mesh in
other templates as well as image (d) shows. This is an effec-

1 2 3 4 5 6

a

b

c

d

e

f

Figure 5: Top row: Standard marching squares templates.
Green vertices exist betweeninside (black) and outside
(white) nodes. Below: Each edge connecting nodes of the
same type can contain one interval of the opposite type
bounded by two additional (red) vertices. Some templates
require inner vertices (yellow) as well.

7 8 9 10 11 12

a

b

c

d

e

f

Figure 6: For some configurations there exist dual tem-
plates. Cases 4a and 10a are the pair known from regular
marching squares.

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

a b c d

Figure 7: Fronts and edges are preserved by considering
vertices of the input mesh inside cells.

tive way to preserve sharp edges and conserve volume (see
Fig. 11 - Fig. 13).

Some of the templates have dual configurations which are
shown in Fig.6. While there is only one ambiguity in stan-
dard marching squares (templates 4-a and 10-a), a few more
are present in the extended set. The ambiguity is solved in
the standard approach by testing the value of the center of
the cell. If it is inside the surface template 4-a is chosen, oth-
erwise template 10-a. The same strategy could be used with
the extended template set because the templates in Fig.6
tend to cover the cell centers while their dual counterparts
tend to leave the center open. We use columns 1,2,3,4 and
11,12 independent of the state of the center. This way we re-
duce the number of yellow vertices needed and even out the
bias of inside / outside area in the set of templates of Fig.5.

Our method does not recover all subgrid features. Sharp
corners inside grid cells are lost for instance. It does, how-
ever, preserve arbitrarily thin layers using a bounded number
of additional vertices. Keeping arbitrarily thin layers is not
always desirable. We introduce an additional level of con-
trol for the user. If the distance of the two red vertices goes
below a threshold, they are discarded. Also, in the case of
liquid simulation, it is feasible to ignore thin layers of void
altogether by only creating red vertices if both ends of an
edge are marked asoutside.

3.2. From 2d to 3d

In the 3d case we need a way to create triangles for each
grid cell. We do this in three steps (see Fig.8). First, we use
the 2d templates on all 6 faces of the cell independently to
create the green, red and yellow vertices plus line segments
between them. In the 3d case, the yellow vertices are located
where edges of the input mesh intersect the faces of the cells.
In order for the triangulation to be compatible across grid
cells, the configuration on a cell face must not depend on
features of the cell not contained in that face. Therefore it is
correct to handle the sides independently reducing the prob-
lem to 2d. Second, we connect the line segments across all
faces of the cell to form closed segment chains.

Finally each of those chains is triangulated separately us-
ing ear clipping [Mei75]. This has to be done carefully. Fig.9
shows three ways of triangulating the boundary (a). To avoid
case (b) we never cut an ear that lies completely inside one

Figure 8: Triangles of a grid cell are created by applying
the 2d templates to all 6 faces and triangulating the resulting
closed loops of segments.

a b c d

Figure 9: Triangulation of a boundary (a) is not unique. The
correct one is (d). Triangles on faces are not allowed (b) and
(c) is an undesired configuration.

face or a cut that leaves triangles in one side only. We do this
by using a bit mask per vertex that stores one bit for each face
the vertex belongs to (yellow vertices have one, non-yellow
vertices have two bits set). If the bit-wise AND of the vertex
masks of an ear is non zero, the cut is illegal. Avoiding case
(c) is a bit trickier. When selecting the next ear, we choose
the one for which a maximal number of vertices is below the
ear’s plane, thereby maximizing the enclosed volume.

3.3. Template Tables

The original marching cubes algorithm uses only 28 = 256
templates. These can be stored in a table to prevent creating
them during runtime. Unfortunately, this is not possible in
our case. Our method uses on the order of 28 ·212 templates
(yellow vertices not considered). Also, the triangulation de-
pends on the actual positions of the vertices in space. One
way to improve performance is to check whether there are
any red or yellow vertices and to fall back to the standard
marching cube template table if this is not the case. Paral-
lelization is another effective way to speed up the process
because triangulation can be done independently for each
cell.

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

4. Results

So far we only have a sequential implementation of the al-
gorithm. All the examples were run on a single core of a 2.4
GHz quad core Pentium.

The images shown in Fig.10 are screen shots of our in-
teractive environment. Here we used the basic surface track-
ing method without feature preservation but with geometric
volume conservation. On average, there are about 40K trian-
gles in the scene. The simulation runs at about 6 frames per
second where surface tracking takes 70ms per time step on
average.

Fig. 11shows how features are preserved by the extended
method. A plate is advected along a rotational velocity field.
It’s thickness is smaller than the grid spacing. Tracking the
yellow face vertices makes sure that edges are preserved
while storing red interval cuts prevents subdgrid features
from disappearing. We also ran the standard notched cylin-
der benchmark. Typically, this test is run on a 100×100 grid.
We used a resolution of only 16×16 cells to emphasize po-
tential problems. Convex edges are preserved. In the concave
region there is some volume gain however. This happens be-
cause in Fig.7we choose face vertices such that the area they
enclose is maximized. The motivation for this is that errors
in concave regions are not as obvious in fluid simulations as
errors in convex fronts of thin sheets.

The sequence in Fig.12 shows a fluid duck as it falls into
tank built of four dynamic rigid bodies. The sheets during
the first splash are tracked accurately. After the fluid pres-
sure pushes the walls apart, the liquid spills out and forms
shallow puddles. Using sparse grids for both surface track-
ing and Eulerian fluid simulation enables efficient handling
of this unbounded scene. The grid resolution for both the
fluid and the surface is such that there are 35×35×12 cells
inside the enclosure. Surface tracking takes 150 ms per time
step at the beginning and about 700 ms at the end of the
sequence while the number of surface cells increases from
14K to 50K. The time used by the Eulerian fluid simulator
increases from 50 ms to 600 ms in the course of the simula-
tion.

A similar scenario is shown in Fig.13. Here a cube is
thrown into a pool of water. Again, the walls tumble and the
liquid spills out. In this scene, we have 40× 40× 24 cells
inside the pool. During the simulation, computation time per
step increases from 100 ms to 800 ms for surface tracking
and from 150 ms to 800 ms for fluid simulation. The number
of surface cells starts at 15K and ends at 55K.

5. Conclusions and Future Work

We have presented a novel method for tracking the surface
of liquids. It uses an explicit representation of the surface,
namely a triangle mesh. This way, there is no need for stor-
ing and maintaining a scalar field in the neighborhood of the

interface. Also, with the feature preserving method, impor-
tant detail such as shallow puddles or thin sheets do not get
lost between grid cells.

It took us only two days to code a working prototype of
the simple core version. For games and other real-time ap-
plications we recommend to start with the simple approach
and to see whether the feature-loss artifacts are acceptable.

Our way to preserve volume is global and allows droplets
to disappear while larger bodies of water grow. As future
work we plan to remove this limitation. One idea is to
use flood fill on the triangles to identify connected sub-
meshes and preserve the volumes of each submesh individ-
ually while merging and splitting have to be handled prop-
erly. Another challenge would be to fix the mesh only locally
where needed and make the interface between fixed and non-
fixed parts watertight as in [WTGT09] while working with
the extended template set.

We hope that the improvements of our method in mem-
ory consumption, speed and the ability to handle unbounded
scenes brings Eulerian fluid simulation within the reach of
interactive 3d computer games. So far we only have a se-
quential version of the algorithm. The next step will be to
parallelize our code using CUDA and render the results di-
rectly on the GPU.

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

References

[BB06] BROCHU T., BRIDSON R.: Fluid animation with
explicit surface meshes. InSymposium on Computer Ani-
mation 2006, poster session(2006).

[BB09] BROCHU T., BRIDSON R.: Robust computational
algorithms for dynamic interface tracking in three dimen-
sions.SIAM Journal on Scientific Computing(2009).

[BGOS06] BARGTEIL A. W., GOKTEKIN T. G.,
O’BRIEN J. F., STRAIN J. A.: A semi-lagrangian con-
touring method for fluid simulation.ACM Transactions
on Graphics 25, 1 (2006).

[CDML07] CHENG L. T., DZUBIELLA J., MCCAMMON

J., LI B.: Application of the level-set method to the im-
plicit solvation of nonpolar molecules.Journal of Chem-
ical Physics 127, 8 (2007).

[CLT07] CRANE K., LLAMAS L., TARIQ S.: Real-time
simulation and rendering of 3d fluids.GPU Gems 3
(2007), 633–673.

[DC98] DESBRUN M., CANI M.: Active implicit surface
for animation. InIn proceedings of Graphics Interface
1998(1998).

[EFFM02] ENRIGHT D., FEDKIW R., FERZIGER J.,
M ITCHELL I.: A hybrid particle level set method for im-
proved interface capturing. InJ. Comput. Phys(2002),
pp. 83–116.

[ELF05] ENRIGHT D., LOSASSOF., FEDKIW R.: A fast
and accurate semi-lagrangian particle level set method. In
Computers and Structures(2005), pp. 479–490.

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.:
Animation and rendering of complex water surfaces. In
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques(2002), ACM Press,
pp. 736–744.

[FF01] FOSTER N., FEDKIW R.: Practical animation
of liquids. In In proceedings of Siggraph 2001(2001),
pp. 23–30.

[GGL98] GLIMM J., GROVE J. W., LI X. L.: Three
dimensional front tracking.SIAM Journal on Scientific
Computing 19(1998), 703–727.

[GGLT99] GLIMM J., GROVE J. W., LI X. L., TAN

D. C.: Robust computational algorithms for dynamic in-
terface tracking in three dimensions.SIAM Journal on
Scientific Computing 21(1999), 2240̋U2256.

[HBAD07] HOGEA C., BIROSA G., ABRAHAM F., DA-
VATZIKOS C.: A robust framework for soft tissue simula-
tions with application to modeling brain tumor mass effect
in 3d mr images.Phys. Med. Biol. 52(2007), 6893–6908.

[HBW03] HOUSTON B., BOND C., WIEBE M.: A uni-
fied approach for modeling complex occlusions in fluid
simulations. InSIGGRAPH ’03: ACM SIGGRAPH 2003
Sketches & Applications(2003), ACM.

[KH07] K ENNEY J., HWANG G.: Electrochemical ma-
chining with ultrashort voltage pulses: modelling of
charging dynamics and feature profile evolution.Nan-
otechnology 16, 7 (2007), 309–313.

[KLL ∗07] KIM B., LIU Y., LLAMAS I., JIAO X.,
ROSSIGNAC J.: Simulation of bubbles in foam with the
volume control method.ACM Trans. Graph. 26, 3 (2007),
98pp.

[LC87] LORENSEN W., CLINE H.: Marching cubes: A
high resolution 3d surface construction algorithm. InPro-
ceedings of ACM SIGGRAPH 87(1987), pp. 163–169.

[LGF04] LOSASSOF., GIBOU F., FEDKIW R.: Simulat-
ing water and smoke with an octree data structure. In
Proceedings of SIGGRAPH 2004, ACM TOG 23(2004),
pp. 457–462.

[LZ09] L EUNG S., ZHAO H.: A grid based particle
method for moving interface problems.Journal of Com-
putational Physics 228 (8)(2009), 2993–3024.

[Mei75] MEISTERS G. H.: Polygons have ears,.Amer.
Math. Monthly 82(1975), 648–651.

[MM07] M ILED M. B. H., MILLER E. L.: A projection-
based level-set approach to enhance conductivity anomaly
reconstruction in electrical resistance tomography.In-
verse Problems 23, 6 (2007), 2375–2400.

[OF03] OSHER S., FEDKIW R.: Level Set Methods
and Dynamic Implicit Surfaces. Springer 2003, ISBN
0387954821, 2003.

[OS88] OSHER S., SETHIAN J. A.: Fronts propagat-
ing with curvature dependent speed: Algorithms based
on hamilton–jacobi formulations.J. Comput. Phys. 79
(1988), 12–49.

[Set99] SETHIAN J.: Level Set Methods and Fast March-
ing Methods. Addison-Weslay Publishing Company,
ISBN 0521645573, 1999.

[Sta99] STAM J.: Stable fluids. Inin Proceedings of ACM
Siggraph 99(1999), pp. 121–128.

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MÜLLER M., POMERANERTS D., GROSS M.: Op-
timized spatial hashing for collision detection of de-
formable objects. Inin Proceedings of Vision, Modeling,
Visualization VMV 2003(2003), pp. 19–21.

[WTGT09] WOJTAN C., THÜREY N., GROSSM., TURK

G.: Deforming meshes that split and merge.ACM SIG-
GRAPH 2009 Papers 28 (3)(August 2009).

c© The Eurographics Association 2009.



Matthias Müller / Fast and Robust Tracking of Fluid Surfaces

Figure 10: Example of an interactive simulation using the basic method with texture coordinate preservation.

Figure 11: Left: Rotation of a plate thinner than the grid resolution without loss of subgrid features. Right: Notched cylinder
rotation on a low resolution grid. Edges are preserved. There is some volume loss/gain in convex/concave regions.

Figure 12: Unbounded Eulerian fluid simulation showing thin sheets, sharp features and shallow puddles rendered off-line.

Figure 13: Two way interaction with rigid bodies.

c© The Eurographics Association 2009.


