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Figure 1: Simulation of a flood at 30 frames per second including physics and rendering. Water flows from the left into an uneven terrain.
The tall cells (below the orange line) represent the major part of the water volume while the computation is focused to the surface area
represented by cubic cells (above the orange line). Particles are used to add visual richness to the scene.

Abstract

We present a new Eulerian fluid simulation method, which allows
real-time simulations of large scale three dimensional liquids. Such
scenarios have hitherto been restricted to the domain of off-line
computation. To reduce computation time we use a hybrid grid
representation composed of regular cubic cells on top of a layer
of tall cells. With this layout water above an arbitrary terrain can
be represented without consuming an excessive amount of mem-
ory and compute power, while focusing effort on the area near the
surface where it most matters. Additionally, we optimized the grid
representation for a GPU implementation of the fluid solver. To
further accelerate the simulation, we introduce a specialized multi-
grid algorithm for solving the Poisson equation and propose solver
modifications to keep the simulation stable for large time steps. We
demonstrate the efficiency of our approach in several real-world
scenarios, all running above 30 frames per second on a modern
GPU. Some scenes include additional features such as two-way
rigid body coupling as well as particle representations of sub-grid
detail.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically Based Modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual Reality
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1 Introduction

Fluid simulation has a long history in computer graphics and has
attracted hundreds of researchers in the past three decades. One
of the main reasons for the fascination with fluids is the rich and
complex behavior of liquids and gases. Due to the computational
expense of capturing this complexity, fluid simulations are typically
executed off-line. The computational load has so far made it hard
to reproduce realistic scenarios in real time.

There are two basic approaches to solving the fluid equations:
the grid-based (Eulerian) and the particle-based (Lagrangian) ap-
proach. Both have been successfully used as off-line methods to
create impressive effects in feature films and commercials. One
way to make such methods fast enough for real-time applications,
such as computer games, is to reduce the grid resolution or the num-
ber of particles from the millions to the thousands. In the grid-
based case, another way to accelerate the simulation is to reduce
the dimensionality of the problem, most often from a 3 dimensional
grid to a 2.5 dimensional height field representation. This reduction
comes at a price: interesting features of a full 3D simulation such
as splashes and overturning waves get lost because the height field
representation cannot capture them.

In this paper we propose a new grid-based method that is fast
enough to simulate fully three dimensional large scale scenes in real
time. The main idea is to combine a generalized height field rep-
resentation with a three dimensional grid on top of it. In contrast
to a traditional height field simulation, we simultaneously solve the
three dimensional Euler equations on both the height field columns
and the regular cubic grid cells.

Our method is an adaptation of the approach proposed by [Irving
et al. 2006]. In their paper, the authors discretize the fluid domain
using a generalized grid, which contains both regular cubic cells
and tall cells. The tall cells represent an arbitrary number of con-
secutive cubic cells in the up direction. With this generality the data
structures as well as the computations become quite complex. For
instance, there is a variable number of face velocities that need to
be stored per tall grid cell, depending on the heights of adjacent
tall cells. Our goal was to reduce the complexity of the general
approach, while retaining enough flexibility to capture the impor-
tant configurations of a three dimensional liquid. To this end, we
introduce three restrictions/modifications:



• Each water column contains exactly one tall cell

• The tall cell is located at the bottom of the water column

• Velocities are stored at the cell center for regular cells and at
the top and bottom of tall cells

These modifications greatly simplify data structures and algorithms
as well as making the method GPU friendly. In addition, due to the
simplified layout, we were able to formulate and implement a fast,
parallel, multigrid Poisson solver for the tall cell grid. To accelerate
our method further, we modified the level set and velocity advection
schemes to ensure stability for the large time steps used in real time
applications and to allow efficient implementation on GPUs.

To summarize, the main contributions of this work are:

1. A tall cell grid data structure that allows for efficient liquid
simulation within a wide variety of scenarios.

2. An efficient multigrid Poisson solver for the tall cell grid. Our
solver can also be used to accelerate fluid simulations on the
commonly employed staggered regular grid.

3. Several modifications in the level set and velocity advection
schemes that allow both larger time steps to be used and an
efficient GPU implementation.

2 Related Work

Early work in the field of Eulerian fluid simulation in computer
graphics include [Foster and Metaxas 1996] who used finite differ-
ences to solve the Navier-Stokes equations, [Stam 1999] who intro-
duced the semi-Lagrangian method for advection and [Foster and
Fedkiw 2001] who combined Lagrangian particles with the level set
method to track the free surface of liquids. Since then, a wide vari-
ety of methods have been proposed to accelerate fluid simulations
in order to cope with large scenes. One solution is to use adaptive
grids in order to focus the computational effort to important regions
such octrees [Losasso et al. 2004], tetrahedral grids [Feldman et al.
2005], [Klingner et al. 2006], [Chentanez et al. 2007], [Batty et al.
2010], Voronoi cells grids [Sin et al. 2009], [Brochu et al. 2010]
or tall cell grids [Irving et al. 2006]. Using an adaptive grid is one
of the main components of our method to reach real-time perfor-
mance.

The simulation of a fluid can be split into three main steps: ad-
vection, surface tracking and pressure projection. Each of these
steps has been the focus of many research papers. For instance,
[Kim et al. 2008] proposed to advect derivatives along with phys-
ical quantities to improve the quality of the simulation. [Selle
et al. 2008] used a modified MacCormack scheme to lift the semi-
Lagrangian step to second order accuracy. To reduce volume-loss,
[Enright et al. 2002] added particles on both sides of the liquid sur-
face to correct the level set. Apart from level sets, other representa-
tions of the liquid surface have been proposed such as particles only
[Zhu and Bridson 2005], [Adams et al. 2007], [Yu and Turk 2010]
or explicit triangle meshes [Bargteil et al. 2005], [Müller 2009],
[Brochu and Bridson 2009], [Wojtan et al. 2010] requiring various
topological fixes. [Enright et al. 2003] used the ghost fluid method
to improve the accuracy of pressure projection near the free sur-
face. In many cases, the pressure projection step is the slowest
part in liquid simulations because it involves solving a large linear
system at each time step. The preconditioned conjugate gradients
(PCG) method is commonly used [Foster and Fedkiw 2001], [Brid-
son 2008] for solving this system efficiently. The regularity of Eu-
lerian grids makes the multigrid approach an effective alternative to
PCG [Molemaker et al. 2008]. [McAdams et al. 2010] combined
both approaches and used one multigrid V-Cycle as a conjugate
gradients’s pre-conditioner. To accelerate the multigrid approach

[Lentine et al. 2010] modified the restriction and prolongation sten-
cils to only consider velocities on the faces of coarser cells.

The complex and interesting motion of a fluid is typically caused
by its interaction with the solid environment. Therefore, handling
solid boundary conditions correctly has been a further active re-
search area. [Takahashi et al. 2002] proposed to use a volume of
fluid fraction method to handle two-way rigid body coupling ac-
curately. [Carlson et al. 2004] included fluid cells as well as cells
occupied by rigid bodies in one pressure solve. Similarly, [Klingner
et al. 2006] combined fluid motion and rigid body momentum into a
single linear system and solved it simultaneously. Later, the method
was extended to include soft body-fluid coupling [Chentanez et al.
2006] and then re-formulated to conserve momentum yielding a
symmetric system matrix in [Robinson-Mosher et al. 2008]. Two-
way coupling of fluids with cloth and thin shells was studied by
[Guendelman et al. 2005]. Using a variational formulation [Batty
et al. 2007] were able to handle fluid-solid interactions with sub-
grid accuracy.

Other approaches to simulate liquids include particles-based meth-
ods such as [Müller et al. 2003], [Premoze et al. 2003], [Adams
et al. 2007], [Solenthaler and Pajarola 2009] and lattice-Boltzmann
models [Thürey and Rüde 2004], [Thürey and Rüde 2009]. Real-
time performance has been achieved by using the pipe model [Št́ava
et al. 2008], the 2D wave equation [Holmberg and Wünsche 2004]
and the shallow water equations [Thurey et al. 2007], [Chentanez
and Müller-Fischer 2010] to name a few. Height field methods can-
not capture the 3D phenomena faithfully though. So far, only a
few researchers have shown 3D Eulerian liquid simulation at inter-
active rates. To achieve real-time performance [Crane et al. 2007]
confined the liquid to a relatively small rectangular domain with-
out general fluid-solid interaction, while [Long and Reinhard 2009]
leveraged the discrete cosine transform to speed up their simulation.

3 Methods

We simulate liquids by solving the inviscid Euler Equations,

∂u

∂t
= −(u · ∇)u +

f

ρ
− ∇p

ρ
, (1)

subject to the incompressibility constraint

∇ · u = 0, (2)

where u = [u, v, w]T is the fluid velocity field, p is the pressure, t
is time, ρ the fluid density and f is a field of external forces. The
equations are solved in the domain specified by a scalar level-set
field φ in the region where φ < 0. φ itself is evolved by

∂φ

∂t
= −u · ∇φ. (3)

[Foster and Fedkiw 2001]. Dirichlet and Neumann boundary con-
ditions must be taken into account as well when solving these equa-
tions.

3.1 Discretization

As a discretization of the simulation domain we use the special-
ized tall cell grid discussed in Section 1. The diagram on the left
of Figure 2 shows the tall cell grid in 2D. From bottom to top,
each column consists of terrain, one tall cell and a fixed number
of regular cells. The terrain height and the height of the tall cell are
discretized to be a multiple of the grid spacing ∆x. These height
values are stored in two arrays. For regular cells, all the physical
quantities like velocity, level set value and pressure are stored at the



Figure 2: Left: 2D cross section of the tall cell grid. Each column stores the terrain height, one tall cell and a constant number of regular
cubic cells. Physical quantities are stored at the center of regular cells and at the top and the bottom of tall cells. Middle and Right: The next
two coarser levels in the hierarchy of grids used for velocity extrapolation and the multigrid solver.

cell center. For tall cells, these quantities are stored at the center of
the topmost and the bottommost subcells. In terms of implementa-
tion, a quantity q is stored in a compressed 3D array, qi,j,k, of size
(Bx, By + 2, Bz) where Bx and Bz are the number of cells along
the x and z axis respectively, By is the constant number of regular
cells along the y-axis per column and the +2 comes from the top
and the bottom values stored in per tall cell. In addition, we store
the terrain height Hi,k and the tall cell height hi,k in two 2D arrays
of size (Bx, Bz). The y-coordinate of the uncompressed position
of an array element qi,j,k is given by

yi,j,k =


Hi,k + 1 if j = 1 (tall cell bottom)
Hi,k + hi,k if j = 2 (tall cell top)
Hi,j + hi,k + j − 2 if j ≥ 3 (regular cell).

(4)

We denote a quantity stored in the compressed array at position
i, j, k with qi,j,k without parentheses, and a quantity at the uncom-
pressed world location (x∆x, y∆x, z∆x) as q(x,y,z) with paren-
theses. Depending on the y-coordinate, there are four cases for
evaluating q(x,y,z) based on the values stored in the compressed
array.

• If y ≤ Hx,z the value of q(x,y,z) is the value below the terrain.

• IfHx,z < y ≤ Hx,z +hx,z the requested quantity lies within
the tall cell. In this case, we linearly interpolate from the top
and the bottom sub-cells of the tall cell:

q(x,y,z) =
y −Hx,z
hx,z

qx,2,z + (1− y −Hx,z
hx,z

)qx,1,z (5)

• If Hx,z + hx,z < y < Hx,z + hx,z +By we have to look up
the quantity from the regular cells in the compressed array as

q(x,y,z) = qx,(y−Hx,z−hx,z−2),z (6)

• Otherwise q(x,y,z) gets the value above air.

This definition of q(x,y,z) hides the tall cell structure of the grid.
Once implemented, the grid can be accesses as if it was a regular
grid composed of cubical cells only, which simplifies what follows
significantly. A quantity at an arbitrary point in space can be com-
puted using tri-linear interpolation of the nearest q(x,y,z)’s.

There are a few properties that distinguish our tall cell formulation
from [Irving et al. 2006].

1. Our tall cell grid has a constant data size for all quantities
p, u, φ. This allows for an efficient GPU implementation.
In contrast, [Irving et al. 2006] store a variable number of
values of p and φ depend on the number of tall cells used per
water column. Moreover, each tall cell stores one velocity

component per touching tall cell neighbor. The fact that the
number of tall cells and the number of touching neighbors
vary during the simulation complicates the data storage and
implementation of [Irving et al. 2006].

2. We use a collocated grid, which reduces the number of rays
that need to be traced in the semi-lagrangian step. This part
of the computation is significant, especially if the resolution
used for surface tracking is higher than the one for simulation.

3. In contrast to the general case, the stencil of the discrere
Laplacian operator on our simplified tall cell grid only in-
cludes a constant number of neighbors (see Section 3.7).

3.2 Time integration

Our time integration scheme is summarized in Algorithm 1. With
the exception of the remeshing step, it follows standard Eulerian
liquid simulation [Enright et al. 2002]. First, we extrapolate the

Algorithm 1 Time step

1: Velocity extrapolation
2: Level set reinitialization
3: Advection and external force integration
4: Remeshing
5: Incompressibility enforcement

velocity field into the air region. Then, after reinitializing the signed
distance field, we advect the level set and the velocity field and
take external forces into account. The next step is to recompute the
height of the tall cells and transfer the physical quantities to the new
grid. Finally, we enforce incompressibility by making the velocity
field divergence free.

3.3 Velocity Extrapolation

The x-component of the velocity field u can be extrapolated into
the air region, where φ > 0, by solving the equation

∂u

∂τ
= − ∇φ|∇φ| · ∇u, (7)

where τ is fictitious time [Enright et al. 2002]. Similar equations
are used for v and w. For a CPU implementation, an O(n logn)
algorithm exists for solving this equation efficiently [Adalsteins-
son and Sethian 1997]. To solve the equation efficiently on GPUs
[Jeong et al. 2007] proposed to use a variation of an Eikonal solver.

If the time step is not too large, the velocity is only needed within a
narrow band of air cells near the liquid surface [Enright et al. 2002].



In this case, the two algorithms mentioned above are efficient be-
cause they can be terminated early. However, in our examples, the
velocity is relatively large and the time step we use ( 1

30
s) is much

larger than is typically used in water simulations. Therefore, water
can cross several grid cells in a single time step. To make this possi-
ble, we need velocity information far away from the liquid surface.

We observed that we only need an accurate velocity field close to
the surface, while far away from the liquid a crude estimate is suf-
ficient. Therefore, we apply the algorithm proposed in [Jeong et al.
2007] only in a narrow band of two cells. Outside this region we
use a hierarchical grid for extrapolating the velocity field. An ex-
ample of a hierarchy of grids is shown in Figure 2. All velocity
components can be extrapolated at the same time because we use a
collocated grid.

3.3.1 Hierarchical Grid for Velocity Extrapolation

The number of levels of the hierarchical grid is determined by L =
log2 min(Bx, By, Bz). The finest level of the grid corresponds to
the simulation grid with ∆xL = ∆x, uLi,j,k = ui,j,k, HL

i,k = Hi,k
and hLi,k = hi,k. On coarser levels l, L > l ≥ 1, the quantities
Hl+1 and hl+1 are defined via down sampling as

Hl
i,k =

⌊
min2i+1,2k+1

i′=2i,k′=2kH
l+1
i′,k′

2

⌋
, (8)

hli,k =

⌈
max2i+1,2k+1

i′=2i,k′=2kH
l+1
i′,k′ + hl+1

i′,k′

2

⌉
−Hl

i,k, (9)

and ∆xl = 2∆xl+1, Blx =
Bl+1

x
2
, Bly =

Bl+1
y

2
, and Blz =

Bl+1
z
2

.

With this definition, coarser grids are tall cell grids and are guaran-
teed to cover all cells in the finer grid, as the diagrams in the middle
and on the right of Figure 2 show. The velocities in the hierarchy
of grids are evaluated by sweeping down then sweeping up the hi-
erarchy. On the finest level L, we declare the velocity of a cell
to be known if the cell is a liquid cell or if the velocity is already
extrapolated. We then go through the levels from finest to coars-
est and obtain velocities by tri-linear interpolation of the velocities
of the previous level using only known velocities and renormaliz-
ing the interpolation weights accordingly. The velocity of a coarse
cell is declared to be known if at least one corresponding finer cell
velocity is known. We then traverse the hierarchy in the reverse or-
der from coarsest to finest and evaluate velocities on finer levels by
tri-linearly interpolating values from coarser grids. After these two
passes every cell of the finest grid has a known velocity.

3.4 Level Set Reinitialization

Advecting φ destroys its property of being a signed distance field.
Therefore, φ needs to be reinitialized periodically to be accurate at
least for two to three cells away from the liquid surface. We use the
method of [Jeong et al. 2007] for this step. Since we use a higher
resolution grid for surface tracking than for the simulation in most
of our examples, this step can be quite costly. In practice, we found
that we can simplify the process significantly, while still getting
satisfactory results. First, we run the reinitialization step only ev-
ery ten frames. Second, during reinitialization, we do not modify
φ values of grid points next to the surface in order to avoid mov-
ing it. Third, in every frame we clamp the value of φ next to the
liquid surface to not exceed the grid spacing ∆x. Without clamp-
ing, incorrect values get advected near the surface and cause surface
bumpiness. To stabilize the process further we clamp all φ values
to have magnitude less than 5∆x. We have not seen significant
problems or artifacts due to these stabilizations.

3.5 Advection and external force integration

To advect u we use the modified MacCormack scheme proposed by
[Selle et al. 2008] and revert to simple Semi-Lagrangian advection
if the new velocity component lies outside the bound of the values
used for interpolation. To update φ we use Semi-lagrangian advec-
tion because we found that MacCormack causes noisier surfaces
even if care is taken near the interface. Due to the collocated grid
we only need to trace the Semi-Lagrangian ray once for all quanti-
ties reusing the same interpolation weights. After that, we integrate
external forces such as gravity using forward-Euler.

3.6 Remeshing

After advection, we identify liquid cells as those where φ ≤ 0.
At this point we need to define new values hi,k, i.e. decide how
many cells above the terrain should be grouped into one tall cell for
each column (i, k). There are a few desirable constraints that may
conflict each other:

1. There must be at leastGL regular cells below the bottom most
liquid surface to capture the 3D dynamics of the liquid.

2. There must be at least GA regular cells above the top most
liquid surface, to allow water to slosh into the air in the next
time steps.

3. The heights of adjacent tall cells must not differ by more than
D units to reduce the volume gain artifacts as will be dis-
cussed in Section 5.

We first iterate through each pair (i, k) and compute the maximum
and minimum y-coordinate of the top of the tall cell that satisfy
constraints (1) and (2), respectively. Next we initialize the tempo-
rary variable ytmp

i,k to be the average of the two extrema. To reduce
the differences in height of adjacent tall cells we then run several
smoothing passes on ytmp

i,k. During the smoothing we clamp ytmp
i,k so

that it always satisfies conditions (1) and (2), giving preference to
condition (2) by enforcing it after condition (1). Finally, we iter-
ate through (i, k) again and enforce condition (3) in a Jacobi-type
fashion using

ytmp’
i,k = min(ytmp

i,k, max
|i′−i|+|k′−k|=1

ytmp
i′,k′ +D) (10)

In our examples we used 8 ≤ GL ≤ 32, GA = 8, 3 ≤ D ≤ 6
and between one and two Jacobi iterations. Finally we set hnew

i,k =
ytmp
i,k − Hi,k. The algorithm attempts to make compromise among

the constraints but may not satisfy all of them. Once we know the
new heights of the tall cells, we transfer all the physical quantities
to the new grid. For regular cells, we simply copy the values at the
corresponding locations from the old grid or interpolate linearly if
the location was occupied by a tall cell in the previous time step.
For tall cells, we do a least square fit to obtain the values at the
bottom and the top of the cell, similar to [Irving et al. 2006].

3.7 Enforcing Incompressibility

Suppose the velocity field after the advection and the remeshing
step is u∗. We want to find the pressure field p such that

∇ · (u∗ − ∆t

ρ
∇p) = 0. (11)

Assuming a constant ρ, we have a Poisson equation

∇2p =
ρ

∆t
∇ · u∗. (12)

To discretize this equation, we need to define the divergence, gradi-
ent and Laplacian operators on our restricted tall cell grid. We use



the following divergence operator

(∇ · u)i,j,k = (
∂u

∂x
)i,j,k + (

∂v

∂y
)i,j,k + (

∂w

∂z
)i,j,k, (13)

where ( ∂u
∂x

)i,j,k =
u+
i,j,k
−u−

i,j,k

∆x
and

u+
i,j,k =

{
ui,j,k+u(i+1,y,k)

2
if the cell (i+ 1, y, k) is not solid

usolid otherwise.
(14)

u−i,j,k is defined similarly and so are the terms ( ∂v
∂y

)i,j,k and
( ∂w
∂z

)i,j,k.

For the Laplacian we use

(∇2p)i,j,k = (
∂2p

∂x2
)i,j,k + (

∂2p

∂y2
)i,j,k + (

∂2p

∂z2
)i,j,k, (15)

where ( ∂
2p
∂x2

)i,j,k =
px+
i,j,k−2pi,j,k+px-

i,j,k

∆x2
and

px+
i,j,k =


pi,j,k

φ(i+1,y,k)

φi,j,k
if cell (i+ 1, y, k) is air,

s(i+1,y,k)pi,j,k+

(1− s(i+1,y,k))p(i+1,y,k) otherwise,

(16)

where si,j,k is the fraction of solid in a cell. px-
i,j,k is defined sim-

ilarly and so are the terms ( ∂
2p
∂y2

)i,j,k and ( ∂
2p
∂z2

)i,j,k. Equation 16
incorporates two important methods. First, for air cells we use the
ghost-fluid method [Enright and Fedkiw 2002] to get more accurate
free-surface boundary conditions by assigning negative pressures to
air cells such that p = 0 exactly on the liquid surface, i.e. where
φ = 0 and not at the center of the air cell. The second line of Equa-
tion 16 utilizes solid fraction [Batty et al. 2007]. It is not only valid
for s = 0 and s = 1 but for any value in between so cells that are
only partially occupied by solids can be handled correctly. This is
an important feature in the case of a hierarchical grid where coarser
cells cover both, solid and fluid cells of finer levels.

Discretizing Equation 12 by applying the operators defined above
to all the regular cells and the bottom and the top of tall cells yields
a linear system for the unknown pressure field p. After solving for
p, we compute its gradient using

(∇p)i,j,k = [(
∂p

∂x
)i,j,k, (

∂p

∂y
)i,j,k, (

∂p

∂z
)i,j,k]T, (17)

where ( ∂p
∂x

)i,j,k =
px+
i,j,k−p

x-
i,j,k

∆x
. ( ∂p

∂y
)i,j,k and ( ∂p

∂z
)i,j,k are de-

fined similarly. The velocity can then be corrected using

ui,j,k− =
∆t

ρ
(∇p)i,j,k (18)

Solving the linear system for p is usually the most time consum-
ing step in fluid simulations. Without tall cells, the matrix of our
system is identical to the one appearing in standard Eulerian regu-
lar grid liquid simulation used by many authors [Foster and Fedkiw
2001], [Enright et al. 2002], [Rasmussen et al. 2004], [Guendelman
et al. 2005], [Batty et al. 2007], [Kim et al. 2008] and can be solved
efficiently using the incomplete Cholesky preconditioned Conju-
gate Gradients method. In the presence of tall cells though, the
resulting linear system is non-symmetric and the Conjugate Gradi-
ents method cannot be used. On the other hand, even though non-
symmetric, the system is still much simpler than the one emerging
from the general case of [Irving et al. 2006] because we have a con-
stant number of coefficients that need to be stored per cell. This
property makes the problem well suited for a data parallel archi-
tecture such as a GPU and for a multigrid approach. We therefore
decided to write a parallel multigrid solver using CUDA[Sanders
and Kandrot 2010].

3.7.1 Multigrid Overview

Algorithm 2 summarizes our multigrid pressure solver.

Algorithm 2 Multigrid

1: Compute matrix AL for level L
2: for l = L− 1 down to 1 do
3: Down sample φl+1 → φl and sl+1 → sl

4: Compute matrix Al for level l
5: end for
6: bL = −∆t

ρ
(∇ · u)

7: pL = 0
8: for i = 1 to num Full Cycles do
9: Full Cycle()

10: end for
11: for i = 1 to num V Cycles do
12: V Cycle(L)
13: end for

The hierarchy of grids we use is the same as the one described in
Section 3.3. On each level, a linear system of the form Alpl = bl

has to be solved. To down sample sl+1 to sl, we do an 8-to-1
average for regular cells and a least square fit of the 8-to-1 averages
of the sub cells for the tall cells. For down sampling φl+1 to φl we
distinguish the following two cases:

1. if the 8 φ-values all have the same sign or l < L− C we use
the 8-to-1 average,

2. otherwise we use the average of the positive φ-values.

The key idea is to ensure that air bubbles persist in the C finest
levels. In those levels, bubbles have a significant influence on the
resulting pressure values. On the other hand, letting air bubbles
disappear in coarser levels is not problematic because only a general
pressure profile is needed there in order to get accurate pressure
values in the original grid. Tracking bubbles on coarser levels is not
only unnecessary but we found that keeping them yields incorrect
profiles because their influence gets exaggerated. We use C = 2 in
all simulations.

We then compute the coefficients of the Al for each level using
Equation 16. Unlike [McAdams et al. 2010], our solver handles
sub-grid features correctly through the ghost fluid and solid frac-
tion methods on all the levels of the hierarchy. So in contrast to
[McAdams et al. 2010], our solver converges even in the presence
of irregular free-surface and solid boundaries. Handling sub-grid
features correctly is crucial to obtain meaningful pressures fields
on coarse levels. For example, in the hydrostatic case we can en-
force free surface boundary conditions at the correct location up
to first order to get a correct linear pressure profile on all levels of
the hierarchy. Without using sub-grid resolution, slightly different
problems would be solved on the coarse grids.

For smoothing, we use the Red-Black Gauss-Seidel(RBGS) method
and solve the system in two parallel passes. The restriction operator
tri-linearly interpolates r, where r(x,y,z) is specially computed as

r(x,y,z) =



rx,1,z if y = Hx,z + 1

rx,2,z if y = Hx,z + hx,z
rx,y−Hx,z−hx,z−2,z if Hx,z + hx,z ≤ y

< Hx,z + hx,z +By
0 otherwise.

(19)

Note that r(x,y,z) is zero everywhere inside a tall cell except at the
top and bottom, because divergence is measured only at the top
and bottom sub-cells. Using a wider stencil for restriction as in



[McAdams et al. 2010] is more expensive and does not yield a faster
convergence rate in our tests. For prolongation we also use tri-
linear interpolation. On the boundary, if we find that a pressure
value outside the grid is needed for interpolation, then we simply
ignore it and renormalize the interpolation weights. If all values are
outside the grid the pressure is set to zero.

There are three critical steps to making our multigrid algorithm con-
verge:

1. The use of full-cycles.

2. Preserving air bubbles in the finest levels.

3. Using the ghost fluid and solid fraction methods.

Not considering any one of these leads to either stagnation or even
divergence of the solver as reported in [McAdams et al. 2010].

Algorithm 3 V Cycle(l)

1: if l == 1 then
2: Solve the linear system, A1p1 = b1

3: else
4: for i = 1 to num Pre Sweep do
5: Smooth(pl)
6: end for
7: rl = bl −Apl

8: bl−1 = Restrict(rl)
9: pl−1 = 0

10: V Cycle(l − 1)
11: pl = pl + Prolong(pl−1)
12: for i = 1 to num Post Sweep do
13: Smooth (pl)
14: end for
15: end if

Algorithm 4 Full Cycle()

1: ptmp = pL

2: rL = bL −ApL

3: for l = L− 1 down to 1 do
4: rl = Restrict(rl+1)
5: end for
6: b1 = r1

7: Solve the linear system, A1p1 = b1

8: for l = 2 to L do
9: pl = Prolong(pl−1)

10: bl = rl

11: V Cycle(l)
12: end for
13: pL = ptmp + pL

3.8 Optimizations

We optimized our method in several ways to increase its perfor-
mance.

• For all tri-linear interpolations, we first interpolate along the
y-axis. This step always requires exactly 2 consecutive grid
point values independent of whether the entry is part of a tall
or a regular cell. In this way, only 8 memory access are nec-
essary instead of up to 16 when using Equation 5 naively.

• In the Gauss Seidel step, to get the pressure below the top
pressure value of a tall cell, we access pi,j−1,k in the com-
pressed grid and do the interpolation implicitly via modifying
the Laplace stencil instead of querying p(i,y−1,k) through the
mapping function.

• We clamp the grid hierarchy at the level that completely fits in
the GPU’s shared memory. This top level can then be solved
efficiently to high precision by executing multiple Gauss Sei-
del iterations using a single kernel (see [Cohen et al. 2010]).

• We only build the hierarchical grid once per simulation frame
at the incompressibility solve step. The same hierarchy can be
re-used for velocity extrapolation in the next time step because
remeshing happens after velocity extrapolation.

3.9 Extensions

In this section we describe a few additional methods to complement
the core grid-based fluid solver.

3.9.1 Rigid Body Coupling

To handle rigid body coupling, we use a variation of the Volume
of Solid Method (VOS) [Takahashi et al. 2002] and alternately run
the water and the rigid body solver. Although more accurate tech-
niques have been proposed for fluid-rigid body coupling [Carlson
et al. 2004], [Chentanez et al. 2006], [Batty et al. 2007], [Robinson-
Mosher et al. 2008], we use this simple method because it requires
only minimal changes of the water simulator that do not affect its
GPU optimized structure. For rigid to water coupling, we voxelize
the rigid bodies into the water simulation grid by modifying the
solid fraction s and blend the fluid and solid velocities based on this
fraction. The divergence calculation treats a cell as solid if s > 0.9.

Special care has to be taken regarding the level set function φ inside
rigid bodies because the φ resulting from the Semi-Lagrangian ad-
vection step is not correct there. We therefore define a second field
φs defined inside rigid bodies only. Ideally, φs would be the extrap-
olation of φ outside the body. A correct evaluation of this function
would, however, require a fast marching step. We use a simpler
approach which lets φ diffuse into the solid over several time steps
using

φsi,j,k =
1

S

∑
|i′−i|+|y′−y|+|k′−k|=1

(1− s(i′,y′,k′))φ(i′,y′,k′)

if S > 0 and

φsi,j,k =
1

6

∑
|i′−i|+|y′−y|+|k′−k|=1

φ(i′,y′,k′)

otherwise, where S =
∑
|i′−i|+|y′−y|+|k′−k|=1(1 − s(i′,y′,k′)).

For mixed cells, the two level set values are blended as sφs + (1−
s)φ. This estimation is not strictly correct, but it is sufficient in all
of our examples to generate plausible behavior.

For water to rigid coupling, we visit all the voxels that contain both
rigid bodies and water and sum up the forces and torques resulting
from the interaction. We consider buoyancy and drag. The buoy-
ancy force is computed using s and the relative density of the solid
w.r.t. the liquid. We use a drag force proportional to s and the rel-
ative velocity between the fluid and the solid. Again, this force is
only an approximation of the real drag force but it yields plausible
results in our examples.

3.9.2 Particle-Based Thickening

To reduce volume loss due to the use of large time steps we apply a
variation of the particle thickening method presented in [Chentanez
et al. 2007]. The method identifies thin parts of the water domain
and seed particles there. These particles are moved forward in time
and then the signed distance function of each particle is united with
the advected φ. A grid location (x, y, z) is considered thin if

1. φthin ≤ φ ≤ 0 and



2. φl = φ at (x, y, z)∆x+ 2φthin ∇φ(x,y,z)

|∇φ(x,y,z)|
is positive and

3. φr = φ at (x, y, z)∆x− 2φthin ∇φ(x,y,z)

|∇φ(x,y,z)|
is positive.

When a thin cell is identified, 16 particles are seeded
on the disk of radius 1

2
∆x centered at (

φ(x,y,z)

φl−φ(x,y,z)
−

φ(x,y,z)

φr−φ(x,y,z)
)(−φthin)

∇φ(x,y,z)

|∇φ(x,y,z)|
whose normal is

∇φ(x,y,z)

|∇φ(x,y,z)|
. The

center of the disk is an estimation of the mid-point between the two
water surfaces above and below the thin region. The radius of a par-
ticle is taken to be −φ at its location. Its velocity is computed via
tri-linear interpolation of the velocity field. Particles whose radius
is negative are ignored. In our examples we used φthin = −1.5∆x.

3.9.3 Particles Generation

For rendering purposes, we automatically generate particles that
represent spray and small droplets. At each time step cells whose φ-
value satisfies φgen ≤ φ ≤ 0 are sampled with trial particles. Again,
the radius of a particle is taken to be −φ at its location and its ve-
locity is computed via tri-linear interpolation of the velocity field.
After being moved forward in time we check whether the particle
arrived at a location where φ is greater than twice its radius. If so,
we seed a number of escape particles there with the same velocity
plus some additional noise. These particles are rendered as spray
in the flood and the lighthouse examples in Figures 1 and 5. In the
lighthouse example, a subset of the spray particles is converted into
mist particles. In addition, whenever spray particles fall into the
main body of water they are converted to foam particles with some
probability. Spray and mist particles move ballistically, the latter
experiencing more drag. Foam particles stay on the surface and are
advected passively with the velocity of the water.

Case Total VE LA VA RM PP
Manip 29.06 1.30 2.35 0.57 0.56 8.56
Tank 27.29 1.10 3.26 0.67 0.56 8.44
Flood 32.33 2.35 0.59 1.14 0.85 13.49
LightH 33.09 2.05 0.61 0.67 0.95 9.77

Table 1: Timing for the examples scenes in milliseconds. Total
stands for the frame time including rendering, VE for velocity ex-
trapolation, LA for level set advection, VA for velocity advection,
RM for remeshing and PP for pressure projection.

Case Sim Surf
Manip 64x(64+2)x64 128x(128+2)x128
Tank 64x(64+2)x64 128x(128+2)x128
Flood 64x(32+2)x256 64x(32+2)x256
LightH 128x(32+2)x128 128x(32+2)x128

Table 2: Simulation and surface tracking grid sizes used in our
examples.

4 Results

We demonstrate the features and performance of our simulation al-
gorithm in several scenarios. The timing data for each example
is listed in Table 1. All examples run in real time at more than 30
frames per second on a single NVIDIA GTX480 graphics card. The
simulation time step is 1

30
second in all cases. We found that exe-

cuting two V-cycles and one full multigrid in the pressure solver is
sufficient to get visually pleasing results. The water level in our ex-
amples does not decrease significantly over time because the multi-
grid solver is able to reduce the low-frequency error quickly even
with only a few cycles. This is in contrast to a Jacobi type method
as used by [Crane et al. 2007] who reported water loss to be a sig-
nificant problem.

Figure 3: Water flows from a magic inexhaustible bucket into a tank
filling it up to an arbitrary level without increasing computational
load.

Figure 4: This dam breaking scene demonstrates two-way interac-
tion of water with rigid bodies and user intervention.

Figure 6: Water flows past a sphere into a tank. This scene was
used for comparing IC(0) PCG with our multigrid solver.



Figure 5: Our method allows real-time simulation of large scale scenarios. To increase realism we enriched the scene by adding various
additional features. Spray, mist and foam effects are created with thousands of particles. We overlayed the beach with a simulated wet map
and added an evolving foam map to the water surface. The high frequency waves are created by adding a wave texture and advecting it with
the velocity field of the water. To demonstrate the interactivity of the scene, we let the user add water and interact with the rigid bodies during
the simulation.

Figure 1 shows a flooding scene. Water is injected on the left side
with an increasing flow rate for 30 seconds after which the flow is
abruptly stopped. This scene demonstrates the efficiency of using
a tall call grid when simulating a scenario with large variations in
water depth. Notice also how water fills up the uneven terrain and
settles down to a flat steady state. In the scene shown in Figure 3
a jet of water fills up a tank to an arbitrary level. Simulating this
scenario using only regular cells would require increasing storage
and computation time with rising water level. To demonstrate two-
way interaction of a liquid with rigid bodies we put a stack of boxes
into a standard dam break scene as shown in Figure 4.

Figure 5 shows a large scale simulation of waves crashing and
breaking over a beach. Here we used particles to add small scale
detail such as spray and mist. The foam map on the water surface is
advected by the water’s velocity field and seeded by spray particles
that fall into the main body of water. Additionally, we overlaid the
sandy area with a wet map which dries out over time and gets ac-
tivated when the water level rises. To add more detail to the water
surface, we superimposed it with a wave texture that is animated by
an FFT-based simulation. Its coordinates are advected and blended
using the algorithm presented in [Neyret 2003]. The entire scene
is inspired by the results presented in [Losasso et al. 2008]. One
of the main goals of our project was to show that it is possible to
simulate such a complex scene in real time. Even though a direct
comparison is not fair due to the fact that we used a coarser grid and
faster hardware it is still worth mentioning that our simulation runs
three to four orders of magnitude faster than what was reported in
[Losasso et al. 2008].

To benchmark our solver we took the Incomplete Cholesky Precon-
ditioned Conjugate Gradients method (IC(0) PCG) [Bridson 2008])
as a reference because it is the state of the art way to solve for
incompressibility in fluid solvers. We ran our tests in double pre-
cision using a single CPU thread on an Intel Core i7 at 2.67 GHz
with 4 GB of RAM. Since PCG is not applicable to non-symmetric
systems, we did the comparison using only cubic cells grid without
tall cells at three different resolutions, 643, 1283, and 2563. Our test
scenario shown in Figure 6 is composed of a stream of water flow-
ing past a solid sphere into a tank with three different water levels.
We ran our tests with two different tolerances on the infinity norm
of the residual: 10−4 1

s
and 10−8 1

s
. The solver ran only full cycles

with num Pre Sweep = num Post Sweep = 2 (see Algorithm 3).
The timings in seconds for various cases are shown in Table 3. Our
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Figure 7: Convergence rates for the three frames shown in Figure
1. The infinity norm of the residual is plotted on a logarithmic scale
against the number of solver iterations. We use single precision
floating point numbers on the GPU which explains why the error
stops decreasing at some point.

multigrid solver outperforms PCG in all scenarios except the one
where the grid resolution and the water level are low, in which case
they perform equally well. With increasing grid size, the speedup
over PCG increases up to 14x at a resolution of 2563 cells. The
number of iterations required to reach a certain tolerance is almost
constant regardless of the grid resolution, which is expected from
the multigrid algorithm that has linear time complexity.

A fair comparison against [McAdams et al. 2010] is not feasible
for practical cases because they do not handle the free liquid sur-
face with sub-grid precision as we do. In other words, the two
methods do not solve the same problem. In addition, in contrast
to [McAdams et al. 2010], our solver runs stably on its own without
an additional PCG loop. The latter requires global reduction with
double precision floating point arithmetic [Bridson 2008], a step
that would slow down a GPU implementation.

For a performance analysis of the general case with cubic and tall
cells we used the three frames of the flood scene shown in Figure
1. Figure 7 shows the infinity norm of the residual on a logarithmic
scale against the the number of multigrid iterations. The curves
show that our solver reduces the error exponentially even for the
asymmetric system derived from a tall cell grid. At some point, the
error cannot be reduced any further and the curves reach a plateau.
This is because we use single precision arithmetic with single pre-
cision floating point numbers on the GPU.

Using a co-located grid is one of the main reasons why our incom-



pressibility solver is simple and fast enough for real-time applica-
tions. However, since the divergence is only measured at the top
and the bottom of tall cells, in the center, the solver is only aware
of water flow in adjacent cubic cells, not inside the tall cell, which
results in slight water gain over time. Even though this problem is
not present in the staggered formulation of [Irving et al. 2006], we
chose speed over accuracy in this trade off. To mitigate the problem,
we make sure that the heights of adjacent tall cells do not differ too
much, using parameter D in the remeshing step described in Sec-
tion 3.6. This step reduces the chance that water flows into tall cells
through their middle faces because they are not exposed to the reg-
ular cells. Note that smoothing the interface between the tall and
the cubic cell regions does not smooth out the visual water surface.
Note also that our pressure projection operator is not idempotent be-
cause the Laplacian is not a composition of gradient and divergence
and hence may not eliminate divergence completely. This is not a
problem in our real-time application but it could be problematic if
very small divergence is required such as in off-line simulation.

Cases

Full‐cycle Full‐cycle

Case

Full‐cycle Full‐cycle

Case

Full‐cycle Full‐cycle

Table 3: Performance comparison between IC(0) PCG and our
multigrid solver based on the three frames shown in Figure 6. The
simulations were executed in a single CPU thread using double pre-
cision floating point numbers.

5 Conclusion and Future Work

We have presented a method that is capable of simulating complex
water scenes in real time. There are three main factors that speedup
the solver to reach real-time performance. First, we use a special-
ized tall cell grid to focus computation time on areas near the sur-
face, where the motion of the liquid is most interesting. Second,
we devised an efficient multigrid solver that can handle the asym-
metric systems resulting from such a hybrid grid. Third, we laid
out the data structures and the algorithms to most efficiently use the
compute power of modern GPUs.

In the future, we plan to investigate how to couple our 3D solver
with a 2D height field solver in order to simulate even larger do-
mains in real time. So far we focused on real-time simulations only.
A next step would be to drop the real-time constraint and substan-
tially increase the grid resolution. This will require a re-design of
our data layout.
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