
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

Wrinkle Meshes

Matthias Müller & Nuttapong Chentanez

NVIDIA

Abstract
We present a simple and fast method to add wrinkles to dynamic meshes such as simulated cloth or the skin of an
animated character. To get the desired surface details, we attach a higher resolution wrinkle mesh to the coarse
base mesh allowing the wrinkle vertices to deviate from their attachment positions within a limited range. The
shape of the wrinkle mesh is determined by a static solver which runs in parallel to the motion of the base mesh.
Our method can be used to automatically enhance a purely animated skin mesh with wrinkles which would be a
tedious task to do by hand. The fact that the tessellation of the wrinkle mesh can be chosen independently of the
structure of the base mesh can be used to control the look of the wrinkles. The locations of wrinkle formation can
be defined by painting the maximum distance the wrinkle mesh is allowed to deviate from the base mesh.
The second important application of wrinkle meshes is to add detail to simulated meshes such as cloth. Our method
allows one to reduce the resolution of the simulation mesh without losing interesting surface detail. This speeds
up the simulation, collision detection and handling and it reduces stretchiness. We show the efficiency and visual
quality of the approach in a real-time setting.

1. Introduction

In real-time environments such as computer games, simula-
tion time is limited to just a few milliseconds per time step.
This prevents the use of high resolution meshes as in off-line
simulations [BMF03, MTV05]. The coarse meshes that are
typically used in games today do not show small scale de-
tail making the cloth look stiff and unrealistic. Fortunately,
wrinkle formation and the global dynamic motion of cloth
can be split into two separate processes without introduc-
ing disturbing visual artifacts. In addition, wrinkling can be
modeled as a quasi static phenomenon as wrinkles do not
oscillate in typical scenarios.

Many researchers have recognized these facts and used
them to derive methods for adding wrinkles to a low res-
olution simulation. With only a few exceptions, this is ac-
complished by adding high resolution displacements in the
normal direction of the base mesh. We remove this restric-
tion and allow the wrinkle mesh to deform in the tangential
direction as well. We show that these additional degrees of
freedom improve the look of wrinkles substantially. In short,
our main contributions are

• To create wrinkles by attaching a separate quasi-statically
deforming wrinkle mesh to a base mesh using Bézier in-
terpolation.

• To use both the normal and tangential degrees of freedom
to create wrinkles.

• To get realistic motion of the wrinkle mesh by applying a
two phase force profile to the edges of the base mesh.

• Methods for collision handling.

Our method is easy to implement and almost fully auto-
matic but still allows the user to control various aspects of it
if desired.

2. Related Work

There is a large body of work on cloth simulation in general
(see the survey paper [NMK∗06] for instance). The majority
of papers about wrinkle simulation propose to add high res-
olution displacement maps along the normals of the under-
lying base mesh. Hadap et al. [HBVT99] compute a bump
map on a coarse mesh that approximately preserves area
by blending several user-defined bump patterns. This idea
was later extended by Kimmerle et al. [KWH04]. The tech-
nique can be implemented in shaders and is thus, fast enough
to run in real-time. The same is true for the approach pro-
posed by [RMB08]. They pre-compute normal maps that are
blended in and out depending on the deformation of the base
mesh. Loviscach [Lov06] blends procedurally generated si-
nusoidal wrinkle patterns based on the local deformations

c© The Eurographics Association 2010.

M. Müller & N. Chentanez / Wrinkle Meshes

Figure 1: Left: The simulated base mesh. Right: Wrinkle mesh attached to the base mesh. The reduced compression resistance
of the base mesh makes the cloth look as if it was simulated in full resolution.

of vertices in the base mesh. Larboulette and Cani [LC04]
as well as Wang et al. [WWY06] employ the idea of edge
length preservation to add wrinkles around a user defined
line. Letting the user place the lines at arbitrary locations
gives a high level of control of the locations and the orien-
tations of wrinkles, but can also be tedious. Tsiknis [Tsi06]
evaluates the displacements along normals by solving a per-
triangle energy minimization problem. Recently, Eibner et
al. [EFP09] proposed an approach to create folds for leather
seat design. They procedurally generate 2d lines perpendic-
ular to the global folds of the seat with certain pre-defined
distributions.

Instead of creating the high resolution wrinkle data proce-
durally, another approach is to capture and store this infor-
mation from either high resolution simulations [WHRO10]
or motion capturing [BRW∗07]. In those cases, the wrinkle
displacements have to be stored in a data base. A problem
of this approach in connection with computer games is the
amount of memory needed to store the data. Also, the num-
ber of deformation modes of the base mesh has to be small
and known in advance to prevent the data base from growing
exponentially. This assumption holds for a face or tight fit-
ting clothing on a character with a fixed skeleton structure. It
does not hold for loose clothing or arbitrarily moving cloth
though. Our approach can handle these cases well because
the wrinkle data is computed on the fly.

In contrast to the papers above, Kang and Cho [KC02] use
a second higher resolution mesh for wrinkle formation that
has all degrees of freedom as in our approach. However, both
meshes are dynamic and fully simulated with the exception
that external forces are only applied to the coarse mesh. To
keep the meshes synchronized, velocity changes are trans-
ferred from the coarse mesh to the fine mesh and back. In
contrast to our method, there are no explicit links between
fine vertices and the base mesh triangles to control wrinkle

Figure 2: 2d sketch of the main idea: The large black dots
and the thick black lines are the vertices and edges of the
simulated or animated base mesh. The white dots and thin
black lines represent the wrinkle mesh. Each white vertex is
attached to the base mesh and allowed to move within the
grey region to keep the fine edge lengths constant.

formation and simplify collision handling. The authors also
reduce the stiffness of the base mesh to increase wrinkle for-
mation but in contrast to our method, they do not distinguish
the two phases depicted in Fig. 6.

Our solver is basically a static version of the Position
Based Dynamics [MHR06, Jak01] and related to the tech-
nique used in Maya’s Nucleus. As in [Mül08], our method
helps to reduce stretchiness by employing coarse and fine
meshes. In contrast to these approaches however, our method
is fully decoupled from the main solver. It can therefore be
added in various scenarios in a plug-and-play fashion with-
out any modifications of the core engine. We have a GPU
implementation that keeps the wrinkle mesh completely on
the graphics card for simulation and rendering. The interface
is simple. All the application has to do is to provide the po-
sitions and normals of the base mesh for creation and then at
each time step.

c© The Eurographics Association 2010.

M. Müller & N. Chentanez / Wrinkle Meshes

3. Wrinkle Mesh Creation

Fig. 2 shows the main idea behind our algorithm. We start
with a base mesh which can be a simulated mesh such as
a piece of cloth or an animated mesh such as the skin of
a rigged character. Our goal is to enhance the surface de-
tail by adding wrinkle patterns. To accomplish this we use
a second, higher resolution wrinkle mesh. This mesh can be
tesselated independently of the tessellation of the base mesh.
It can even have a different genus closing holes for instance.
We compute references from the wrinkle vertices to the base
mesh which are composed of the index of a base triangle and
a pair of barycentric coordinates that define a point within
the base triangle. Not all wrinkle vertices need to be attached
to the base mesh although non-attached vertices should be
sporadic in order to get a correct wrinkling behavior. In our
examples, we work with attached vertices only. Experiment-
ing with non-attached ones is part of our future work.

There are many ways to create a wrinkle mesh. A simple
one is to start with the base mesh and keep applying edges
splits until the longest edge falls below a given threshold (see
for instance [MTG04]). The references to the base triangles
and the corresponding barycentric coordinates can easily be
determined during that process. When the base mesh is reg-
ular such as the mesh of a curtain or flag, it is desirable to
keep the wrinkle mesh regular as well in order to minimize
visual artifacts due to the tesselation. This can be achieved
by subdividing each triangle regularly into a fixed number
of similar sub-triangles. Again, determining the references
is straightforward.

In order to have maximum control over the wrinkle pat-
terns, the mesh can also be created by an artist alongside the
base mesh. The artist controls wrinkle formation by increas-
ing the resolution of the mesh in areas of interest. In this
general case, the references have to be found by determining
the closest point of each wrinkle vertex on the base mesh.

3.1. Constraints

We use three constraint types (see Fig. 3).

• Attachment constraint: Each wrinkle vertex is restricted to
stay within a given radius ri to its attachment point on the
base triangle. We define this radius per vertex by painting
the wrinkle mesh. The attachment constraints are impor-
tant to prevent the wrinkle mesh from forming low fre-
quency buckling patterns and can be used to control the
frequency of the wrinkles.
• Distance constraint: The wrinkle vertices are restricted to

keep the edge lengths equal to their rest lengths. We de-
termine the rest lengths by measuring the edge lengths in
the original configuration of the wrinkle mesh – the bind
pose in case of animated characters – and multiplying that
value with a pre-stretch factor, s. For s < 1 the wrinkle
mesh is pre-stretched and wrinkles only appear in highly
compressed regions while for s > 1, wrinkles form even in

pΔ
p

a

1p

2p
0l

pΔ2
1

pΔ2
1

n

a

p

1p 2p
2

bendingk
pΔ

2
bendingk

pΔ

3p

4p

Figure 3: Constraints on the wrinkle mesh. Top left: Attach-
ment constraint. Top right: One sided attachment constraint
to avoid collisions. Bottom left: Distance constraint. Bottom
right: Simplified bending constraint with stiffness kbending.

1n
2n

2x1x

Figure 4: Instead of linearly interpolating the attachment
positions, we use a Bézier patch to hide the piecewise linear
shape of the base mesh.

the rest state. In the example shown in Fig. 8 we painted s
on a per edge basis explicitly while we used s = 0.9 glob-
ally in the clothing scenes.

• Bending constraint: To control the bending stiffness of the
wrinkle mesh, we add additional edge constraints con-
necting opposite vertices in pairs of adjacent triangles.
Working with dihedral angles would be another possibil-
ity. We found the simple and fast distance constraint ap-
proach to be sufficient in our use cases though.

4. Runtime Update

At each time step, the attachment point of each wrinkle ver-
tex is computed first. The simplest way is to use linear inter-
polation:

a = (1−b0−b1)xi0 +b0xi1 +b1xi2 , (1)

where xi0,xi1 and xi2 are the base mesh vertices of the refer-
enced triangle and b0,b1 the corresponding barycentric co-
ordinates. However, as Fig. 5 shows, this piecewise linear
interpolation yields artifacts when the triangles of the base
mesh are substantially larger than the wrinkle mesh trian-
gles. To fix this problem, we use the interpolation proposed
in [VPBM01] for rendering polygonal meshes. They approx-
imate the shape of a triangle with a three-sided cubic Bézier
patch using both, the corner positions and the normals (see

c© The Eurographics Association 2010.

M. Müller & N. Chentanez / Wrinkle Meshes

Figure 5: Attaching the wrinkle vertices to the flat surfaces
of the base triangles reveals the piecewise linear shape of
the base mesh.

Fig. 4). This function can be evaluated analytically at any po-
sition inside the triangle which is important since the tessela-
tions of the base and the wrinkle mesh are independent. The
Bézier patch approximation can still yield small visual arti-
facts. As future work we plan to use a subdivision scheme to
compute the attachment positions of regular wrinkle meshes
as proposed by [Tsi06].

The position pi of wrinkle vertex i is defined relative to
the attachment position as

pi = ai +oi, (2)

where oi is an offset vector. It would be natural to define
this offset in the local frame of the base triangle. However,
we found that the cheaper way of defining it in world space
does not introduce visual artifacts. The offset is stored as a
state variable so the static solver can use the solution of the
previous time step as a starting point. In other words, we
store oi instead of pi. The latter can be computed at any time
using Eq. (2).

4.1. Static Solver

We use a simple Gauss-Seidel iterative solver to update the
offset vectors such that the constraints on the wrinkle mesh
are satisfied. Although converging slower than global solvers
in general, the Gauss-Seidel method has several important
advantages. It can directly handle over-constrained systems
and systems of non-linear and unilateral equations and is
easy to implement. In a given iteration, the solver visits each
constraint and performs a geometric projection.

For a distance constraint between points p1 and p2 with
rest length l0, the positions are updated in a straightforward

fashion as

∆p =
p2−p1
|p2−p1|

(|p2−p1|− l0) (3)

p1← p1 +
1
2

∆p (4)

p2← p2−
1
2

∆p (5)

(6)

The same projection is applied for bending constraints.
However, in contrast to the distance constraints, ∆p is scaled
with a scalar 0≤ kbending ≤ 1 to be able to control the bend-
ing stiffness of the wrinkle mesh. Attachment constraints are
projected via

p← p+
a−p
|a−p| (|a−p|− r) (7)

but only if |a−p| > r, since attachment constraints are uni-
lateral.

After the solve, the offsets are updated as oi = pi−ai.

4.2. Collision Handling

We distinguish two types of collision, self-collision and col-
lision with the environment. To reduce self-penetration of
the wrinkle mesh we choose the ri to be smaller than halve
the average edge length of the wrinkle mesh (see Section
3.1). The choice cannot give a guarantee that no self colli-
sions occur. Finding a way to prevent self collisions by con-
struction is part of our future work. The visual artifacts of
such small scale self collisions are minimal in our examples
though if the mesh is drawn two sided.

The collision volumes of purely animated characters as in
Fig. 8 are typically much coarser than the graphical mesh
and are inflated. To prevent collisions of the environment
with the wrinkle mesh, one simply has to make sure that the
inflation is larger than ri.

In the case of clothing simulation, we rely on the cloth
simulator to take care of collisions against the character.
Typically, outward normals of the base mesh are available.
Collisions of the wrinkle mesh can then be avoided by pro-
jecting wrinkle vertices to the outer side of the base mesh.
Since each wrinkle vertex has a link to the closest base
triangle this can be done efficiently by looking at a local
neighborhood of base triangles. We take an even simpler
approach. We interpolate the outward normals of the base
mesh at the attachment points and make sure that the wrin-
kle vertices stay on the proper side of the plane defined by
the attachment point and the interpolated normal. There is
yet another approach: Typical cloth simulators give the cloth
a finite thickness to increase stability. If this is the case one
can simply choose the thickness to be larger than the 2ri.

c© The Eurographics Association 2010.

M. Müller & N. Chentanez / Wrinkle Meshes

lc

1k

2k

xΔ

f

(a)

(b)

Figure 6: To model the behavior of the wrinkle mesh under
compression, two stiffness constants k1 and k2 are assigned
to the edges of the base mesh. Up to the compression limit cl
the repulsive force is weak (a). After that point the wrinkle
mesh is fully folded up (b) resulting in a higher stiffness k2.

Figure 7: With reduced compression stiffness the base mesh
does not buckle. Instead, its triangles get compressed creat-
ing the correct wrinkles in the fine mesh.

4.3. Weakening Compression Resistance

On animated meshes, edge lengths typically vary enough
over time to induce the desired wrinkles. However, in the
case of simulated cloth, the simulator that operates on the
base mesh makes sure edges do not get compressed. This
works against wrinkle formation and makes the mesh move
in a way which is not correct for the superimposed fine mesh.

To fix this problem we change the force profile on the
cloth edges as shown in figure Fig. 6. Under compression,
the spring stiffness is small up to a point defined by the
global compression limit parameter 0≤ cl ≤ 1. If the edge is
compressed beyond this point, the stiffness gets larger mod-

eling the effect that the cloth is now fully folded. This mod-
ification makes a big difference. Without reducing the com-
pression resistance of the base mesh, the wrinkle mesh looks
as shown in the left image of Fig. 1 instead of showing the
detail depicted in the right image. We were surprised how
well the two step profile actually works. Instead of simply
adding wrinkles to a coarse mesh, the wrinkle mesh behaves
almost exactly as if it were simulated in full detail. As the
accompanying video shows, it is hard to see that the cloth
simulation is actually performed on a much coarser mesh
than what the user sees on the screen (see Fig. 7).

5. Results

All our examples were run on a single core of an Intel Core2
CPU at 2.4 GHz and an NVIDIA Quadro GPU. We tested
our method on animated characters, regular cloth patches
and clothing.

The base mesh shown on the left of Fig. 1 and in Fig. 7
contains 2K triangles. We subdivided it to get a wrinkle mesh
with 32K triangles. The wrinkle mesh solver takes only 5 ms
per time step including attachments computations, 10 itera-
tions over the constraints and normal computation for ren-
dering. This means that the speed of the scene is bound only
by the cloth simulator and the renderer.

Fig. 8 shows the base model of a character with 2K trian-
gles. We created a wrinkle mesh for it containing 32K trian-
gles. Due to the same triangle count, the timings are exactly
as in the previous scene since the wrinkle solver is not aware
of whether the input comes from a cloth simulator or char-
acter animation. Allowing the wrinkle vertices to displace in
the tangential direction improves the qualities of the wrin-
kles substantially as the four screenshots on the bottom right
show. Wrinkles can form freely across the tesselation of the
base mesh and form sharper contours.

We compared our method with example-based wrinkle
synthesis [WHRO10] as shown in Fig. 9. In general, wrinkle
synthesis yields more realistic results but it is also substan-
tially more expensive then our method in terms of compute
time and memory consumption. The top row shows the base
mesh, wrinkle synthesis and our method for the same pose.
In the middle we show how a self intersecting base mesh
is handled in both cases. Wrinkle synthesis hides the situa-
tion better than our method but it produces self intersections
in the fine mesh which are clearly visible. The bottom row
shows the synthesized mesh, our method and the result of
our method when painting the pre-stretch factors s explicitly
to remove wrinkles in the chest region.

Fig. 10 shows the application of wrinkle meshes to cloth-
ing on characters. The base mesh of the skirt has 7K trian-
gles for which we created a wrinkle mesh composed of 28K
triangles. The static solver takes 4 ms for 5 iterations per
time step in this sample. In the video and just as a techni-
cal test, we subdivided the wrinkle mesh further to get 112K

c© The Eurographics Association 2010.

M. Müller & N. Chentanez / Wrinkle Meshes

Figure 8: Left: Base mesh vs. wrinkle mesh. Right top: Normal dof only. Right bottom: All dofs. (Model by Simutronics)

Figure 9: Comparison of our method with example-based wrinkle synthesis [WHRO10]. Top and middle row: Base mesh, wrin-
kle synthesis and our method. The middle row shows how self intersection in the base model is handled by the two approaches.
Bottom row: Result generated with wrinkle synthesis, our method and our method with painted pre-stretch factors s to reduce
the wrinkles in the chest region. Model courtesy of Huamin Wang

c© The Eurographics Association 2010.

M. Müller & N. Chentanez / Wrinkle Meshes

triangles even though the visual result becomes less plausi-
ble. Even in this extreme case, the cloth solver and renderer
remain the bottlenecks since the wrinkle mesh solver only
takes 10 ms per time step.

6. Conclusion and Future Work

We presented a simple, yet effective method for adding wrin-
kles to animated characters or simulated cloth. The fact that
wrinkle generation is fully automatic allows the generation
of convincing high resolution cloth behavior on top of coarse
simulation meshes.

In the case of animated characters, more control that we
can currently provide would be desirable. One of the main
drawbacks of our method is that there is no simple way to
control or specify the directions of the wrinkles since they
emerge automatically in the expected directions. In the fu-
ture we plan to extend our method to give the artist more
direct control on wrinkle directions.

In addition to animated skin or simulated cloth, wrin-
kle meshes are well suited to add detail to soft bodies as
well. Soft bodies are typically simulated using tetrahedral
meshes. Instead of showing tetrahedra, high resolution sur-
face meshes are used for rendering which are attached to the
tetrahedral meshes using barycentric coordinates exactly as
in the wrinkle mesh case. Therefore, a few modifications will
allow us to add wrinkles to soft bodies as well.

Currently, we are in the process of including our solver
into a commercial game library.

References
[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation of

clothing with folds and wrinkles. In SCA ’03: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2003), pp. 28–36.

[BRW∗07] BICKEL B., ROL M. B., WOJCIECH A., MIGUEL
M., PFISTER O. H., GROSS M.: Multi-scale capture of facial ge-
ometry and motion. In ACM Trans. on Graphics (2007), vol. 26.

[EFP09] EIBNER G., FUHRMANN A., PURGATHOFER W.: Gen-
erating predictable and convincing folds for leather seat design.
In Proceedings of the 25th Spring Conference on Computer
Graphics (SCCG) (2009), pp. 93–96.

[HBVT99] HADAP S., BANGERTER E., VOLINO P., THAL-
MANN N. M.: Animating wrinkles on clothes. In VIS ’99: Pro-
ceedings of the conference on Visualization ’99 (1999), pp. 175–
182.

[Jak01] JAKOBSEN T.: Advanced character physics in the fysix
engine. www.gamasutra.com (2001).

[KC02] KANG Y.-M., CHO H.-G.: Bilayered approximate in-
tegration for rapid and plausible animation of virtual cloth with
realistic wrinkles. Computer Animation (2002), 203.

[KWH04] KIMMERLE S., WACKER M., HOLZER C.: Multilay-
ered wrinkle textures from strain. In VMV (2004), pp. 225–232.

[LC04] LARBOULETTE C., CANI M.-P.: Real-time dynamic
wrinkles. In Computer Graphics International 2004 (June 2004),
pp. 522–525.

[Lov06] LOVISCACH J.: Wrinkling coarse meshes on the gpu.
Comput. Graph. Forum 25, 3 (2006), 467–476.

[MHR06] MÜLLER M., HENNIX B. H. M., RATCLIFF J.: Posi-
tion based dynamics. Proceedings of Virtual Reality Interactions
and Physical Simulations (2006), 71–80.

[MTG04] MÜLLER M., TESCHNER M., GROSS M.: Physically-
based simulation of objects represented by surface meshes. In
Proceedings of Graphics Interface (GI 2004) (2004), pp. 26–33.

[MTV05] MAGNENAT-THALMANN N., VOLINO P.: From early
draping to haute couture models: 20 years of research. The Visual
Computer 21, 8-10 (2005), 506–519.

[Mül08] MÜLLER M.: Hierarchical position based dynamics.
Proceedings of Virtual Reality Interactions and Physical Simu-
lations (2008).

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in com-
puter graphics. Computer Graphics Forum 25, 4 (2006), 809–
836.

[RMB08] REIS C. D. G., MARTINO J. M. D., BATAGELO H. C.:
Real-time simulation of wrinkles. In Proceedings of WSCG
(2008).

[Tsi06] TSIKNIS D.: Better Cloth Through Unbiased Strain Lim-
iting and Physics-Aware Subdivision. Master’s thesis, The Uni-
versity Of British Columbia, 2006.

[VPBM01] VLACHOS A., PETERS J., BOYD C., MITCHELL
J. L.: Curved pn triangles. In I3D ’01: Proceedings of the 2001
symposium on Interactive 3D graphics (New York, NY, USA,
2001), ACM, pp. 159–166.

[WHRO10] WANG H., HECHT F., RAMAMOORTHI R.,
O’BRIEN J.: Example-based wrinkle synthesis for clothing
animation. In Proceedings of ACM SIGGRAPH (2010).

[WWY06] WANG Y., WANG C. C. L., YUEN M. M.-F.: Fast
energy-based surface wrinkle modeling. Computers & Graphics
30, 1 (2006), 111–125.

c© The Eurographics Association 2010.

M. Müller & N. Chentanez / Wrinkle Meshes

Figure 10: Left: Base mesh with 7K triangles. Right: Wrinkle mesh comprised of 28K triangles.

c© The Eurographics Association 2010.

