

How to write a Fire Simulator

Matthias Müller, Ten Minute Physics

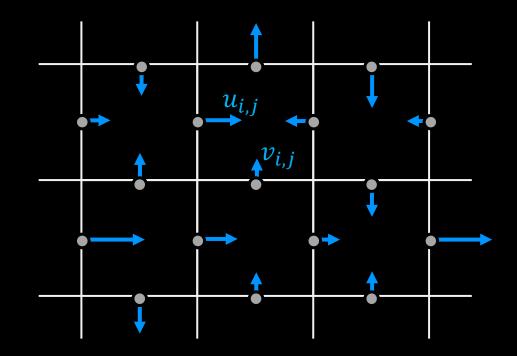
For the code and the demo see:

www.matthiasmueller.info/tenMinutePhysics

Based on Eulerian Fluid Simulator

See tutorial 17: How to write a Eulerian fluid simulator

• A fluid is a liquid or a gas


tutorial 17: passive flow

today: active, burning

Fluid as a Velocity Field on a Grid

• Velocity is a 2d vector $\mathbf{v} = \begin{bmatrix} u \\ v \end{bmatrix}$

staggered grid

Simulation Overview

Modify velocities (add gravity, external forces)

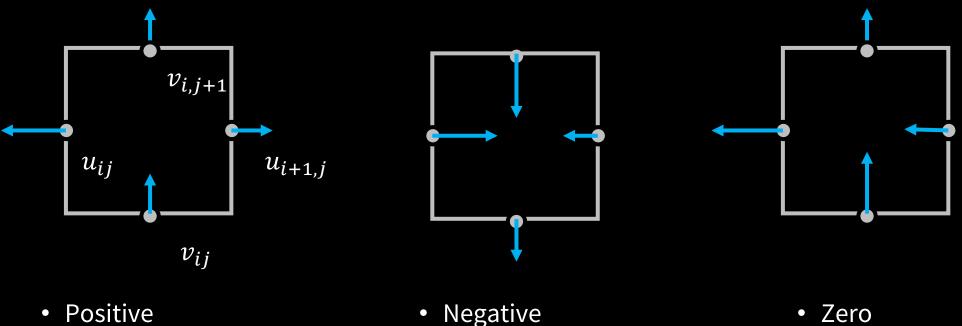
Make the fluid incompressible

Advect velocity and smoke density fields

Adding Gravitational Acceleration

for all i, j

 $v_{i,j} \leftarrow v_{i,j} + \Delta t \cdot g$

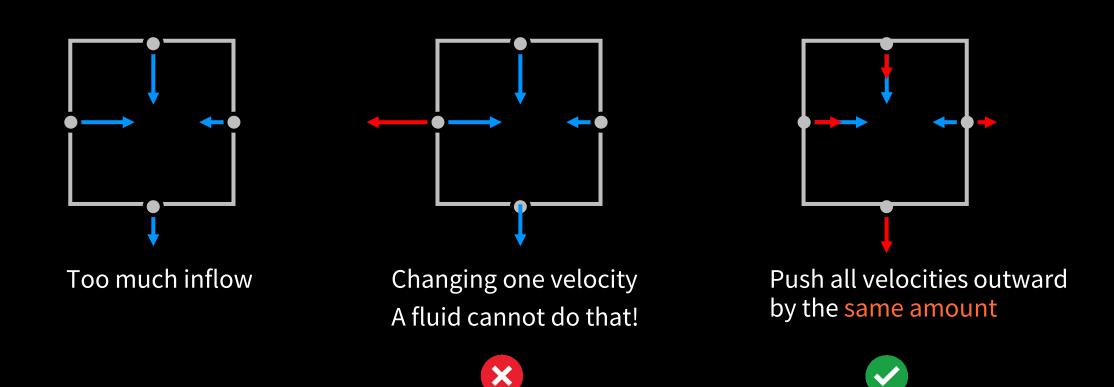

 Δt : time step size

g: gravitational acceleration (~9.81 $\frac{m}{s^2}$)

Make Fluid Incompressible

For each cell:

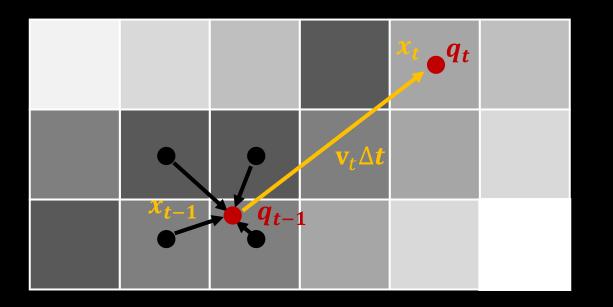
Compute total outflow (divergence): $d \leftarrow u_{i+1,j} - u_{i,j} + v_{i,j+1} - v_{i,j}$



• Too much outflow

• Too much inflow

- Zero
- Incompressible


Forcing Incompressibility

- Global solution: multiple iterations through all cells
- Considering boundary conditions (see tutorial 17)

Advection

- Drive quantities (smoke density, velocities) along the velocity field
- Goal: compute the value of a quantity at q at position \mathbf{x}_t

- The previous position is $\mathbf{x}_{t-1} = \mathbf{x}_t \mathbf{v}_t \cdot \Delta t$ (v = velocity, Δt = time step size)
- Not necessarily at the cell or face center!
- Compute the value as the weighted average of values around x_{t-1} .

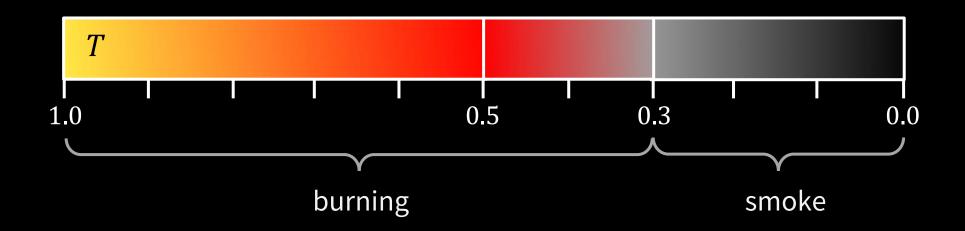
Fire Simulation Overview

Modify velocities (add lift forces, turbulence)

Make the fluid incompressible

Advect velocity and temperature fields

Modify temperatures (burning, cooling)



C C

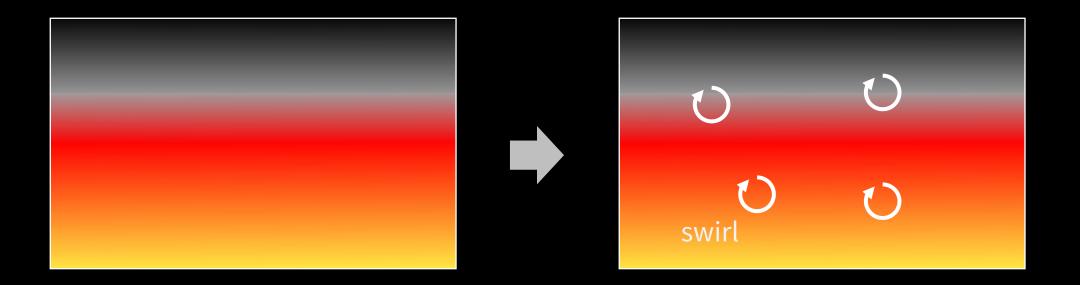
Simplified Physics

• Fuel, Temperature, Smoke → One normalized temperature field [0,1]

 \rightarrow time

Fire Simulation

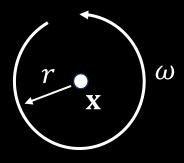
At every time step


- Initialize $T \leftarrow 1$ at fire sources
- Decrease T over time: $T \leftarrow \max(T r \cdot \Delta t, 0)$. (Two different cooling rates for fire and smoke)
- Advect *T* along the fluid velocity
- Influence on velocity

```
v_{\text{target}} \leftarrow v_{\text{lift}} \cdot Tv \leftarrow v + a \cdot (v_{\text{target}} - v) \cdot \Delta t
```

• Tune parameter v_{lift} and acceleration a

Adding Turbulence


• A burning floor simulation:

- We need external disturbance, turbulence!
- Adding swirls to simulate external disturbances and enhancing turbulence

Swirls

 A swirl has a position x, a radius r, an angular velocity ω and an age

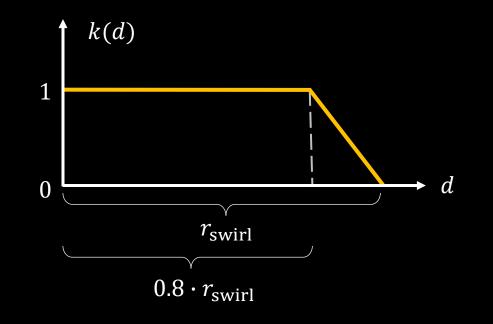
- Swirls are created with a given probability at fire source cells
- Advected with the velocity field
- Deleted when their maximum age is reached

Influence of Swirls on Velocities

• Velocity update

Let $\mathbf{d} = \mathbf{x}_{grid} - \mathbf{x}_{swirl}$ and d the length of \mathbf{d} Then we have:

$$u_{\text{grid}} \leftarrow u_{\text{grid}} + \left(u_{\text{swirl}} - d_{y} \cdot \omega - u_{\text{grid}}\right) \cdot k(d)$$
$$v_{\text{grid}} \leftarrow v_{\text{grid}} + \left(v_{\text{swirl}} + d_{x} \cdot \omega - v_{\text{grid}}\right) \cdot k(d)$$


 The equations pull the grid velocities toward the swirl velocity at the grid node

Kernel

$$u_{\text{grid}} \leftarrow u_{\text{grid}} + (u_{\text{swirl}} - d_{y} \cdot \omega - u_{\text{grid}}) \cdot k(d)$$
$$v_{\text{grid}} \leftarrow v_{\text{grid}} + (v_{\text{swirl}} + d_{x} \cdot \omega - v_{\text{grid}}) \cdot k(d)$$

• The strength is defined by a kernel function k(d)with $k(d) \in [0,1]$ and k(d) = 0 if $d \ge r_{swirl}$ • I use the simple kernel:

