
Basic Rigid Body Simulation

Matthias Müller, Ten Minute Physics
matthiasmueller.info/tenMinutePhysics

/warp

Method

To simulate rigid bodies…

solve ,where

Is rigid body simulation only for math wizards?

Using Position Based Dynamics

• Position Based Dynamics (9)
• 3d Vector Math (7)

See tutorials:

PBD Algorithm for Particles

while simulating
for all particles 𝑖

𝐯𝑖 ← 𝐯𝑖 + ∆𝑡 𝐠
𝐩𝑖 ← 𝐱𝑖
𝐱𝑖 ← 𝐱𝑖 + ∆𝑡 𝐯𝑖

for all constraints 𝐶
solve(𝐶, ∆𝑡)

for all particles 𝑖
𝐯𝑖 ← (𝐱𝑖 − 𝐩𝑖)/∆𝑡

solve(𝐶, ∆𝑡):

for all particles 𝑖 in 𝐶
compute ∆𝐱𝑖
𝐱𝑖 ← 𝐱𝑖 + ∆𝐱𝑖

Distance Constraint

• Rest distance 𝑙0

∆𝐱1 =
𝑤1

𝑤1 + 𝑤2
𝑙 − 𝑙0

𝐱2 − 𝐱1
𝐱2 − 𝐱1

∆𝐱2 = −
𝑤2

𝑤1 +𝑤2
𝑙 − 𝑙0

𝐱2 − 𝐱1
𝐱2 − 𝐱1

• Current distance 𝑙

• Masses 𝑚𝑖

• Inverse masses 𝑤𝑖 = 1/𝑚1

𝑙0

𝑙

𝐱2, 𝑚2

𝐱1, 𝑚1

∆𝐱1

∆𝐱2

Rigid Bodies

• The center of mass of a rigid body acts like a particle
with mass 𝑚, position 𝐱 and velocity 𝐯.

𝑚 𝐱

𝐯

𝐱𝐪

𝛚

𝐈

A rigid body also has

• an orientation 𝐪

• an angular velocity 𝛚

• and the moment of inertia 𝐈

Orientational Quantities

3d Rigid Transformation

local frame (center at the origin)

𝟎

𝐚

𝐚′ = 𝐱 + 𝐪 ∗ 𝐚

𝐱𝐪

𝐚’

global pose

𝐪 is a quaternion, ∗ is quaternion rotation𝐚 = 𝐪−𝟏 ∗ (𝐚′ − 𝐱)

Three.js

Angular Velocity

• 𝛚 is a 3d vector passing through 𝐱

𝐱

𝛚

• Its length 𝛚 is the speed
in angle per second

• Its direction describes the
axis of rotation

𝐚

𝐫

𝐯𝒂

• The velocity of a point 𝐚 is 𝐯𝒂 = 𝛚× 𝐫

• With moving body: 𝐯𝒂 = 𝐯 +𝛚 × 𝐫

Moment of Inertia

• force causes acceleration

𝐟 = 𝑚 ∙ 𝐚

𝐚 = 1/𝑚 ∙ 𝐟

• mass is the resistance to force

𝛕 = 𝐈 ∙ 𝛂

𝛂 = 𝐈−1 ∙ 𝛕

• torque (angular force 𝐫 × 𝐟)
causes angular acceleration

• Moment of inertia describes
the resistance to torque

𝑟

𝑓

𝑎
𝑟

𝑓

𝑎

𝑓

𝑎

𝑟

• The resistance to a torque of the same object
can vary in different directions:

large resistance small resistancelarge resistance

Moment of Inertia

The Inertia Tensor

𝐈 =

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧𝐈 =

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧 aligned with principal axis

𝛕 = 𝐈 ∙ 𝛂

Wikipedia

• For general triangle meshes, see an upcoming tutorial

https://en.wikipedia.org/wiki/List_of_moments_of_inertia

• For basic shapes see

PBD Algorithm for Rigid Bodies

while simulating
for all bodies 𝑖

integrate 𝐯𝑖, 𝐱𝑖
integrate 𝛚𝑖 , 𝐪𝑖

for all constraints 𝐶
solve(𝐶, ∆𝑡)

for all bodies 𝑖

solve(𝐶, ∆𝑡):

for all bodies 𝑖 in 𝐶
compute ∆𝐱𝑖, ∆𝐪𝑖
𝐱𝑖 ← 𝐱𝑖 + ∆𝐱𝑖
𝐪𝑖 ← 𝐪𝑖 + ∆𝐪𝑖

update 𝐯𝑖
update 𝛚𝑖

PBD Integration

𝐪prev ← 𝐪

𝛚 ← 𝛚+ ℎ𝐈−1𝛕ext

𝐪 ← 𝐪 +½ℎ𝐯[𝜔x, 𝜔y, 𝜔z, 0]𝐪

for all bodies 𝑖
𝐩𝑖 ← 𝐱𝑖
𝐯𝑖 ← 𝐯𝑖 + ∆𝑡 𝐠
𝐱𝑖 ← 𝐱𝑖 + ∆𝑡 𝐯𝑖

PBD Velocity Update

∆𝐪 ← 𝐪𝐪prev
−1

for all bodies 𝑖
𝐯𝑖 ← (𝐱𝑖 − 𝐩𝑖)/∆𝑡

𝛚 ← 2[∆𝑞𝑥, ∆𝑞𝑦, ∆𝑞𝑧]/∆𝑡

Distance Constraint

∆𝐱1 ∆𝐱2

corrections proportional to 𝑚−1

𝐫1 𝐫2

𝐚1 𝐚2

∆𝐱1
∆𝐱2∆𝐪1 ∆𝐪2

𝐚2𝐚1

corrections proportional to 𝑚−1and 𝐈−1

𝑙

𝑙0

XPBD Algorithm for Rigid Bodies

• Compute generalized inverse masses:

𝑤𝑖 ← 𝑚𝑖
−1 + (𝐫𝑖 × 𝐧)T𝐈𝑖

−1 (𝐫𝑖 × 𝐧)

• Compute Lagrange multiplier (𝛼 physical inverse stiffness):

𝐱𝑖 ← 𝐱𝑖 ±𝑤𝑖𝜆𝐧

𝐪𝑖 ← 𝐪𝑖 ±
1

2
𝜆 𝐈𝑖

−1 𝐫𝑖 × 𝐧 , 0 𝐪𝑖

𝜆 ← −𝐶 ∙ (𝑤1 + 𝑤2 +
𝛼

∆𝑡2
)−1

• Update states:

• Given 𝐫𝟏, 𝐫𝟐, constraint direction 𝐧 and the constraint distance 𝐶

• For a distance constraint: 𝐧 = 𝐚𝟐 − 𝐚𝟏 / 𝐚𝟐 − 𝐚𝟏 and 𝐶 = 𝑙 − 𝑙0

𝜆𝐧/∆𝑡2 is the constraint force

PBD vs. XPBD

𝜆 ← −𝑠 ∙ 𝐶 ∙ (𝑤1 +𝑤2)
−1PBD: simply scaling the correction vector

𝜆 ← −𝐶 ∙ (𝑤1 + 𝑤2 +
𝛼

∆𝑡2
)−1

Both are unconditionally stable (never blow up)

• Time-step dependent

• Scaling factor 𝑠 is a non-physical quantity

XPBD: derived from implicit Euler integration

• Time step independent

• The scalar 𝛼 is the inverse of physical stiffness

• Both can handle infinite stiffness with 𝑠 = 1 and 𝛼 = 0!

• For infinite stiffness they are identical

Chain Demo

𝑔 = 10.0
𝑚

𝑠2

Three.js

Three.js

Three.js

Interaction

𝐫
mouse ray

mouse ray

𝑑

𝑑

On mouse down
• Intersect mouse ray with the scene to find 𝐩

• Store the distance 𝑑 along the ray

• Store the local position 𝐫 on the body

• Create a distance constraint

𝐫

𝒑𝑚

On mouse move
• Update 𝒑𝑚 using 𝑑

• Update 𝒑𝑏 using 𝐫 and the current
pose of the body

𝒑𝑏

𝒑𝑚

𝒑𝑏

See you in the next tutorial…

